首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Optimized and far-red-emitting variants of fluorescent protein eqFP611   总被引:2,自引:1,他引:1  
Fluorescent proteins (FPs) emitting in the far-red region of the spectrum are highly advantageous for whole-body imaging applications because scattering and absorption of long-wavelength light is markedly reduced in tissue. We characterized variants of the red fluorescent protein eqFP611 with bright fluorescence emission shifted up to 639 nm. The additional red shift is caused by a trans-cis isomerization of the chromophore. The equilibrium between the trans and cis conformations is strongly influenced by amino acid residues 143 and 158. Pseudo monomeric tags were obtained by further genetic engineering. For the red chromophores of eqFP611 variants, molar extinction coefficients of up to approximately 150,000 were determined by an approach that is not affected by the presence of molecules with nonfunctional red chromophores. The bright fluorescence makes the red-shifted eqFP611 variants promising lead structures for the development of near-infrared fluorescent markers. The red fluorescent proteins performed well in cell biological applications, including two-photon imaging.  相似文献   

2.
Proteins from the family of the green fluorescent protein (GFP) are presently extensively used in molecular and cellular biology. Recent studies suggest that isomerization of the chromophore occurs upon excitation and is involved in nonradiative deactivation. Using Raman spectroscopy, we report on photoinduced cis-trans isomerization in the red fluorescent protein eqFP611 from the sea anemone Entacmaea quadricolor. The crystal structure of eqFP611 shows that the chemical structure of the chromophore, p-hydroxybenzylidene-imidazolinone with an extended -conjugated system, is nearly identical to the chromophore of other red fluorescent proteins such as DsRed and HcRed. However, the chromophore of eqFP611 has a trans configuration whereas the chromophore of DsRed has a cis configuration. Upon irradiation with 532-nm light, the absorption of eqFP611 peaking at 559 nm diminished, and concomitantly a drastic decrease in the quantum yield of fluorescence as well as more complex decay kinetics was observed. Upon irradiation, changes in the Raman spectrum of eqFP611 were observed, and the relative intensities and peak positions of the irradiated eqFP611 showed striking similarity with the peaks in the Raman spectrum of DsRed. These observations are tentatively interpreted as trans-to-cis isomerization of the chromophore taking place upon irradiation together with the opening of new, nonradiative pathways.  相似文献   

3.
While green fluorescent proteins (GFPs) have been widely used as tools in biochemistry, cell biology, and molecular genetics, novel red fluorescent proteins (RFPs) with red fluorescence emission have also been identified, as complements to the existing GFP technology. The unusual spectrophotometric and fluorescence properties of GFPs and RFPs are controlled by the protonation states and possibly cis/trans isomerization within their chromophores. In this work, we have investigated the electronic structures, liquid structures, and solvent shifts of the possible neutral and anionic protonated states and the cis/trans isomerization of a RFP chromophore model compound HBMPI in aqueous solutions. The calculations reproduced the experimental absorption solvatochromatic shifts of dilute HBMPI in water under neutral and anionic conditions. Unlike the GFP chromophore, the RFP chromophore model compound HBMPI in basic solution can only adopt a conformation where the C=C bond between the bridge group and the imidazolinone ring and the C-C bond between the imidazolinone and ethylene groups exist in cis and trans conformations, respectively. Moreover, the solvent-solute hydrogen-bonding interactions are found to contribute significantly to the total solvent shifts of pi-pi* excitations of aqueous HBMPI solutions, signifying the importance of protein environment in the determination of the conformation of the chromophores in red fluorescent proteins.  相似文献   

4.
We use CASSCF and MRPT2 calculations to characterize the bridge photoisomerization pathways of a model red fluorescent protein (RFP) chromophore model. RFPs are homologues of the green fluorescent protein (GFP). The RFP chromophore differs from the GFP chromophore via the addition of an N-acylimine substitution to a common hydroxybenzylidene-imidazolinone (HBI) motif. We examine the substituent effects on the manifold of twisted intramolecular charge-transfer (TICT) states which mediates radiationless decay via bridge isomerization in fluorescent protein chromophore anions. We find that the substitution destabilizes states associated with isomerization about the imidazolinone-bridge bond and stabilizes states associated with phenoxy-bridge bond isomerization. We discuss the results in the context of chromophore conformation and quantum yield trends in the RFP subfamily, as well as recent studies on synthetic models where the acylimine has been replaced with an olefin.  相似文献   

5.
In the past few years a large series of the advanced red‐shifted fluorescent proteins (RFPs) has been developed. These enhanced RFPs provide new possibilities to study biological processes at the levels ranging from single molecules to whole organisms. Herein the relationship between the properties of the RFPs of different phenotypes and their applications to various imaging techniques are described. Existing and emerging imaging approaches are discussed for conventional RFPs, far‐red FPs, RFPs with a large Stokes shift, fluorescent timers, irreversibly photoactivatable and reversibly photoswitchable RFPs. Advantages and limitations of specific RFPs for each technique are presented. Recent progress in understanding the chemical transformations of red chromophores allows the future RFP phenotypes and their respective novel imaging applications to be foreseen.  相似文献   

6.
Multiple forms of red fluorescent proteins (RFPs) were observed in the gut juice of the silkworm, Bombyx mori L. It is to be noted that only one RFP band is reported in the literature so far. However, we report here three electrophoretically separated RFPs (A, B and C) found to be heterogeneous with respect to their components, namely the protein part and the fluorescent tetrapyrrole pigment moiety. Of the three RFPs, band C was found to be a glycoprotein. The absorption extinction coefficients and fluorescence quantum yields of the three RFPs were estimated. Further, this is the first communication demonstrating the presence of three different chlorophyll derivatives associated with the three different RFPs. The pigments were analyzed by thin layer chromatography followed by their elution to characterize the pigments by spectrophotometric and spectrofluorometric methods. Spectral characteristics have led to the identification of monovinyl chlorophyllide a, divinyl protochlorophyllide a and monovinyl pheophytin a as being associated with RFP bands A, B and C, respectively. These three purified RFPs can serve as the source of the three pigments as the standards.  相似文献   

7.
Red fluorescent proteins (RFPs) have found widespread application in chemical and biological research due to their longer emission wavelengths. Here, we use computational protein design to increase the quantum yield and thereby brightness of a dim monomeric RFP (mRojoA, quantum yield = 0.02) by optimizing chromophore packing with aliphatic residues, which we hypothesized would reduce torsional motions causing non-radiative decay. Experimental characterization of the top 10 designed sequences yielded mSandy1 (λem = 609 nm, quantum yield = 0.26), a variant with equivalent brightness to mCherry, a widely used RFP. We next used directed evolution to further increase brightness, resulting in mSandy2 (λem = 606 nm, quantum yield = 0.35), the brightest Discosoma sp. derived monomeric RFP with an emission maximum above 600 nm reported to date. Crystallographic analysis of mSandy2 showed that the chromophore p-hydroxybenzylidene moiety is sandwiched between the side chains of Leu63 and Ile197, a structural motif that has not previously been observed in RFPs, and confirms that aliphatic packing leads to chromophore rigidification. Our results demonstrate that computational protein design can be used to generate bright monomeric RFPs, which can serve as templates for the evolution of novel far-red fluorescent proteins.

We used computational design to increase quantum yield in a fluorescent protein by optimizing chromophore packing to reduce non-radiative decay, resulting in an >10-fold increase in quantum yield that was further improved by directed evolution.  相似文献   

8.
Abstract— The dependence of the isomeric configuration of the retinylidene chromophore of bacteriorhodopsin on the pH value and on the wavelength of irradiation (in a photostationary state) were examined by high performance liquid chromatographic analyses of extracted retinal. The process of isomerization of the chromophore during light adaptation was also traced. More than 93% of all- trans and less than 5% of 13- cis retinal were extracted in the photostationary state for irradiation at 560 nm in the pH region of5–9 as well as for irradiation in the wavelength region of 400–650 nm at pH 7. Comparison of the above photostationary state composition with that of protonated n -butylamine Schiff base of retinal indicates that strong constraint is applied to the chromophore by the apo-protein. The constraint can be changed at low or high pH by a partial denaturation or transition of the apo-protein, which results in the generation of 11- cis retinal in the extract. At higher photon density, the isomerization process of the chromophore during light adaptation at pH 7 was characterized, as extracted isomeric retinal, by (1) the initial decrease in 13- cis and increase in all- trans , (2) a subsequent, transient toward the above photostationary state composition. The results are discussed in terms of both the photoisomerization pattern inherent in the retinylidene chromophore and the control by the apo-protein.  相似文献   

9.
Truncated green fluorescent protein (GFP) with the 11th β-strand removed is potentially interesting for bioconjugation, imaging, and the preparation of semisynthetic proteins with novel spectroscopic or functional properties. Surprisingly, the truncated GFP generated by removing the 11th strand, once refolded, does not reassemble with a synthetic peptide corresponding to strand 11 but does reassemble following light activation. The mechanism of this process has been studied in detail by absorption, fluorescence, and Raman spectroscopy. The chromophore in this refolded truncated GFP is found to be in the trans configuration. Upon exposure to light a photostationary state is formed between the trans and cis conformations of the chromophore, and only truncated GFP with the cis configuration of the chromophore binds the peptide. A kinetic model describing the light-activated reassembly of this split GFP is discussed. This unique light-driven reassembly is potentially useful for controlling protein-protein interactions.  相似文献   

10.
Geometry configurations of a large fraction of the kindling fluorescent protein asFP595 around the chromophore region were optimized by using the effective fragment potential quantum mechanical-molecular mechanical (QM/MM) method. The initial coordinates of heavy atoms were taken from the structure from the Protein Data Bank archive corresponding to the dark-adapted state of the Ala143 --> Gly mutant of asFP595. Optimization of geometry parameters was performed for all internal coordinates in the QM part composed of the chromophore unit and the side chains of His197, Glu215, and Arg92 as well as for positions of effective fragments constituting the MMpart. The structures corresponding to the anion trans, anion cis, and zwitterion trans moieties were considered among various alternatives for the chromophore unit inside the protein matrix. The QM/MM simulations show that the protein environment provides stabilization for the trans-zwitterion isomer compared to the gas-phase conditions. By using the multiconfigurational CASSCF and the time-dependent density functional theory calculations, we estimated positions of spectral bands corresponding to vertical S(0)-S(1) transitions. The results of simulations support the assumption that the dark state of asFP595 corresponds to the anionic or zwitterionic trans-conformation, while the kindled state corresponds to the anionic cis-conformation.  相似文献   

11.
Fluorescent proteins (FPs) are valuable tools as biochemical markers for studying cellular processes. Red fluorescent proteins (RFPs) are highly desirable for in vivo applications because they absorb and emit light in the red region of the spectrum where cellular autofluorescence is low. The naturally occurring fluorescent proteins with emission peaks in this region of the spectrum occur in dimeric or tetrameric forms. The development of mutant monomeric variants of RFPs has resulted in several novel FPs known as mFruits. Though oxygen is required for maturation of the chromophore, it is known that photobleaching of FPs is oxygen sensitive, and oxygen-free conditions result in improved photostabilities. Therefore, understanding oxygen diffusion pathways in FPs is important for both photostabilites and maturation of the chromophores. In this paper, we use molecular dynamics calculations to investigate the protein barrel fluctuations in mCherry, which is one of the most useful monomeric mFruit variant. We employ implicit ligand sampling to determine oxygen pathways from the bulk solvent into the mCherry chromophore in the interior of the protein. We also show that these pathways can be blocked or altered and barrel fluctuations can be reduced by strategic amino acid substitutions.  相似文献   

12.
To understand how photoactive proteins function, it is necessary to understand the photoresponse of the chromophore. Photoactive yellow protein (PYP) is a prototypical signaling protein. Blue light triggers trans–cis isomerization of the chromophore covalently bound within PYP as the first step in a photocycle that results in the host bacterium moving away from potentially harmful light. At higher energies, photoabsorption has the potential to create radicals and free electrons; however, this process is largely unexplored. Here, we use photoelectron spectroscopy and quantum chemistry calculations to show that the molecular structure and conformation of the isolated PYP chromophore can be exploited to control the competition between trans–cis isomerization and radical formation. We also find evidence to suggest that one of the roles of the protein is to impede radical formation in PYP by preventing torsional motion in the electronic ground state of the chromophore.  相似文献   

13.
In red fluorescent proteins such as DsRed, an acylimine is formed from the Phe65-Gln66 linkage in GFP-like immature form, while it shows a cis configuration in its mature state. To date, the relationship between acylimine formation and trans-cis isomerization is still unresolved. We have calculated bond rotation profiles for mature and immature chromophores within the protein using our own n-layered integrated molecular orbital and molecular mechanism (ONIOM) approach. The results suggested that the isomerization is barrierless in acylimine formed in the mature state, suggesting that the acylimine formation precedes the trans-cis isomerization in DsRed chromophores. Further decomposition analysis of electrostatic contributions from individual residues has identified several residues and a specific water molecule which could play key roles in controlling the rate of the trans-cis isomerization of peptide bond in immature GFP-like protein. The results also highlight the importance of Gln66-like of tripeptide motif (chromophore) in the maturation of red fluorescent proteins. In view of the considerable interest in developing red fluorescent proteins for numerous biotechnological applications, these results should be useful for design of novel fluorescent proteins.  相似文献   

14.
Green fluorescent proteins (GFPs) are widely used as tools in biochemistry, cell biology, and molecular genetics due to their unusual optical spectroscopic characteristics. The spectrophotometric and fluorescence properties of GFPs are controlled by the protonation states and possibly cis-trans isomerization of the chromophore (p-hydroxybenzylideneimidazolinone). In this work, we have investigated electronic structures, liquid structures, and solvent shifts of the three possible protonated states (neutral, anionic, and zwitterionic) and their cis-trans isomerization of a model compound 4'-hydroxybenzylidene-2-methyl-imidazolin-5-one-3-acetate (HBMIA) in aqueous solutions. Our calculated results suggest that HBMIA could adopt both cis and trans conformations in a solution, and it exists in three different protonation states depending on the pH conditions. The absorption spectrum observed in neutral solution is thus assigned to the electronic excitations within the neutral form and the cis isomer of the zwitterionic form, while the absorption band at 425 nm in the basic solution is due to the excitations within the anionic form and the trans isomer of the zwitterionic form. Some technical problems related to the computation of electronic excitations within the HBMIA at the anionic state are also discussed.  相似文献   

15.
The synthesis and study of the photo- and thermoresponsive behavior of a series of novel asymmetric mesogenic dimers, consisting of a cholesterol moiety linked to a diphenylbutadiene chromophore via flexible alkyl chains are reported. These mesogenic dimers possess the combined glass forming properties of the cholesterol moiety and the photochromic and luminescent properties of the butadiene moiety. Photoinduced cis/trans isomerization of the butadiene chromophore in these materials could be utilized to bring about an isothermal phase transition from the smectic to the cholesteric state. By photochemically controlling the cis/trans isomer ratio, the pitch of the cholesteric could be continuously varied making it possible to tune the color of the film over the entire visible region, and the color images thus generated could be stabilized by converting them to N* glasses. These materials were also polymorphic, exhibiting two crystalline forms possessing distinctly different fluorescence properties. The ability to thermally switch these materials from one crystalline form to the other in a reversible manner also makes them useful for recording fluorescent images.  相似文献   

16.
The red fluorescent protein Rtms5H146S displays a transition from blue (absorbance λmax 590 nm) to yellow (absorbance λmax 453 nm) upon titration to low pH. The pKa of the reaction depends on the concentration of halide, offering promise for new expressible halide sensors. The protonation state involved in the low pH form of the chromophore remains, however, ambiguous. We report calculated excitation energies of different protonation states of an RFP chromophore model. These suggest that the relevant titration site is the phenoxy moiety of the chromophore, and the relevant base and conjugate acid are anionic and neutral chromophore species, respectively.  相似文献   

17.
Urocanic acid (UCA) is a chromophore in the stratum corneum. Ultraviolet radiation (ultraviolet B) has been shown to suppress mammalian cell-mediated immunity. The photoisomerization of trans -UCA to cis -UCA was proposed as the initiator of the suppression process. Cis -urocanic acid has been demonstrated to suppress immunity by a variety of experiments. Investigators should be aware that laboratory illumination may be capable of interconverting trans -UCA and cis -UCA during experimental manipulations. This possible inadvertent contamination of one isomer by the other may influence results. We demonstrated that fluorescent lamps, daylight, sunlight and incandescent lamps were able to bring about isomerization. Window glass and container materials of plastic and clear glass did not filter out effective wavelengths, but three commercial plastic diffusers on fluorescent fixtures prevented the isomerization. Because the molar extinction coefficient (ɛ) for cis -UCA is less than that of trans -UCA, we have exposed 0.1 m M trans -UCA to ambient light and monitored the change in absorbance. A method is given to calculate the percentage of trans and cis isomers from the absorbance at 277 nm when the initial purity and absorbance are known. Using this procedure, we validated the molar extinction coefficient of cis -UCA.  相似文献   

18.
We have studied the structural changes induced by optical excitation of the chromophore in wild-type photoactive yellow protein (PYP) in liquid solution with a combined approach of polarization-sensitive ultrafast infrared spectroscopy and density functional theory calculations. We identify the nuC8-C9 marker modes for solution phase PYP in the P and I0 states, from which we derive that the first intermediate state I0 that appears with a 3 ps time constant can be characterized to have a cis geometry. This is the first unequivocal demonstration that the formation of I0 correlates with the conversion from the trans to the cis state. For the P and I0 states we compare the experimentally measured vibrational band patterns and anisotropies with calculations and find that for both trans and cis configurations the planarity of the chromophore has a strong influence. The C7=C8-(C9=O)-S moiety of the chromophore in the dark P state has a trans geometry with the C=O group slightly tilted out-of-plane, in accordance with the earlier reported structure obtained in an X-ray diffraction study of PYP crystals. In the case of I0, experiment and theory are only in agreement when the C7=C8-(C9=O)-S moiety has a planar configuration. We find that the carboxylic side group of Glu46 that is hydrogen-bonded to the chromophore phenolate oxygen does not alter its orientation on going from the electronic ground P state, via the electronic excited P state to the intermediate I0 state, providing conclusive experimental evidence that the primary stages of PYP photoisomerization involve flipping of the enone thioester linkage without significant relocation of the phenolate moiety.  相似文献   

19.
Large Stokes shift (LSS) red fluorescent proteins (RFPs) are highly desirable for bioimaging advances. The RFP mKeima, with coexisting cis- and trans-isomers, holds significance as an archetypal system for LSS emission due to excited-state proton transfer (ESPT), yet the mechanisms remain elusive. We implemented femtosecond stimulated Raman spectroscopy (FSRS) and various time-resolved electronic spectroscopies, aided by quantum calculations, to dissect the cis- and trans-mKeima photocycle from ESPT, isomerization, to ground-state proton transfer in solution. This work manifests the power of FSRS with global analysis to resolve Raman fingerprints of intermediate states. Importantly, the deprotonated trans-isomer governs LSS emission at 620 nm, while the deprotonated cis-isomer's 520 nm emission is weak due to an ultrafast cis-to-trans isomerization. Complementary spectroscopic techniques as a table-top toolset are thus essential to study photochemistry in physiological environments.  相似文献   

20.
Photoactivatable fluorescent proteins are essential players in nanoscopy approaches based on the super-localization of single molecules. The subclass of reversibly photoswitchable fluorescent proteins typically activate through isomerization of the chromophore coupled with a change in its protonation state. However, the interplay between these two events, the details of photoswitching pathways, and the role of protein dynamics remain incompletely understood. Here, by using a combination of structural and spectroscopic approaches, we discovered two fluorescent intermediate states along the on-switching pathway of the fluorescent protein Padron. The first intermediate can be populated at temperatures as low as 100 K and results from a remarkable trans-cis isomerization of the anionic chromophore taking place within a protein matrix essentially deprived of conformational flexibility. This intermediate evolves in the dark at cryotemperatures to a second structurally similar but spectroscopically distinct anionic intermediate. The final fluorescent state, which consists of a mixture of anionic and neutral chromophores in the cis configuration, is only reached above the glass transition temperature, suggesting that chromophore protonation involves solvent interactions mediated by pronounced dynamical breathing of the protein scaffold. The possibility of efficiently and reversibly photoactivating Padron at cryotemperatures will facilitate the development of advanced super-resolution imaging modalities such as cryonanoscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号