首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 315 毫秒
1.
Effect of water on the formamide-intercalation of kaolinite   总被引:12,自引:0,他引:12  
The molecular structures of low defect kaolinite completely intercalated with formamide and formamide-water mixtures have been determined using a combination of X-ray diffraction, thermoanalytical techniques, DRIFT and Raman spectroscopy. Expansion of the kaolinite to 10.09 A was observed with subtle differences whether the kaolinite was expanded with formamide or formamide-water mixtures. Thermal analysis showed that greater amounts of formamide could be intercalated into the kaolinite in the presence of water. New infrared bands were observed for the formamide intercalated kaolinites at 3648, 3630 and 3606 cm(-1). These bands are attributed to the hydroxyl stretching frequencies of the inner surface hydroxyls hydrogen bonded to formamide with water, formamide and interlamellar water. Bands were observed at similar positions in the Raman spectrum. At liquid nitrogen temperature, the 3630 cm(-1) Raman band separated into two bands at 3633 and 3625 cm(-1). DRIFT spectra showed the hydroxyl deformation mode at 905 cm(-1). Changes in the molecular structure of the formamide are observed through both the NH stretching vibrations and the amide 1 and 2 bands. Upon intercalation of kaolinite with formamide, bands are observed at 3460, 3344, 3248 and 3167 cm(-1) attributed to the NH stretching vibration of the NH involved with hydrogen bonded to the oxygens of the kaolinite siloxane surface. In the DRIFT spectra of the formamide intercalated kaolinites bands are observed at 1700 and 1671 cm(-1) and are attributed to the amide 1 and amide 2 vibrations.  相似文献   

2.
Vibrational spectroscopy of formamide-intercalated kaolinites   总被引:2,自引:0,他引:2  
The vibrational spectroscopy of low and high defect kaolinites fully and partially intercalated with formamide have been determined using a combination of X-ray diffraction, DRIFT and Raman spectroscopy. Expansion of the high defect kaolinite to 10.09 A resulted in a decrease in the peak width of the d(001) peak attributed to a decrease in defect structures upon intercalation. Changes in the defect structures of the low defect kaolinite were observed. Additional infrared bands were observed for the formamide intercalated kaolinites at 3629 and 3606 cm(-1). The 3629 cm(-1) band is attributed to the hydroxyl stretching frequency of the inner surface hydroxyl group hydrogen bonded to the carboxyl group of the formamide. The 3606 cm(-1) band is ascribed to water in the interlayer. Concomitant changes are observed in both the hydroxyl deformation modes and in the carboxyl bands.  相似文献   

3.
Raman spectroscopy of urea and urea-intercalated kaolinites at 77 K   总被引:6,自引:0,他引:6  
The Raman spectra of urea and urea-intercalated kaolinites have been recorded at 77 K using a Renishaw Raman microprobe equipped with liquid nitrogen cooled microscope stage. The NH2 stretching modes of urea were observed as four bands at 3250, 3321, 3355 and 3425 cm(-1) at 77 K. These four bands are attributed to a change in conformation upon cooling to liquid nitrogen temperature. Upon intercalation of urea into both low and high defect kaolinites, only two bands were observed near 3390 and 3410 cm(-1). This is explained by hydrogen bonding between the amine groups of urea and oxygen atoms of the siloxane layer of kaolinite with only one urea conformation. When the intercalated low defect kaolinite was cooled to 77 K, the bands near 3700 cm(-1) attributed to the stretching modes of the inner surface hydroxyls disappeared and a new band was observed at 3615 cm(-1). This is explained by the breaking of hydrogen bonds involving OH groups of the gibbsite-like layer and formation of new bonds to the C=O group of the intercalated urea. Thus it is suggested that at low temperatures two kinds of hydrogen bonds are formed by urea molecules in urea-intercalated kaolinite.  相似文献   

4.
Kaolinite hydroxyl surfaces have been modified by the combined application of heat and pressure in the presence of water at 120 degrees C and 2 bars and at 220 degrees C and 20 bars. X-ray diffraction shows that some of the layers are expanded. It is hypothesized that this expansion occurs at the edges of the crystals due to the intercalation of water. The X-ray diffraction data is supported by diffuse reflectance infrared spectroscopy, with additional hydroxyl stretching bands observed around 3550 and 3590 cm-1. These bands are attributed to adsorbed water and to edge-intercalated water. Additional bands are observed in the hydroxyl deformation region around 895 and 877 cm-1. The position of these bands depends on the defect structure of the kaolinite and the conditions under which the kaolinite was thermally treated. Additional water bending vibrations were observed at 1651 and 1623 cm-1 for the thermally treated high-defect kaolinite and at 1682 and 1610 cm-1 for the low-defect kaolinite. The bands at 1651 and 1682 cm-1 are attributed to the bending modes of water coordinated to the kaolinite surface. The role of water in the edge intercalation of water in the high- and low-defect kaolinites is apparently different. Copyright 1999 Academic Press.  相似文献   

5.
The effect of mechanochemical activation upon the intercalation of formamide into a high-defect kaolinite has been studied using a combination of X-ray diffraction, thermal analysis, and DRIFT spectroscopy. X-ray diffraction shows that the intensity of the d(001) spacing decreases with grinding time and that the intercalated high-defect kaolinite expands to 10.2 A. The intensity of the peak of the expanded phase of the formamide-intercalated kaolinite decreases with grinding time. Thermal analysis reveals that the evolution temperature of the adsorbed formamide and loss of the inserting molecule increases with increased grinding time. The temperature of the dehydroxylation of the formamide-intercalated high-defect kaolinite decreases from 495 to 470 degrees C with mechanochemical activation. Changes in the surface structure of the mechanochemically activated formamide-intercalated high-defect kaolinite were followed by DRIFT spectroscopy. Fundamentally the intensity of the high-defect kaolinite hydroxyl stretching bands decreases exponentially with grinding time and simultaneously the intensity of the bands attributed to the OH stretching vibrations of water increased. It is proposed that the mechanochemical activation of the high-defect kaolinite caused the conversion of the hydroxyls to water which coordinates the kaolinite surface. Significant changes in the infrared bands assigned to the hydroxyl deformation and amide stretching and bending modes were observed. The intensity decrease of these bands was exponentially related to the grinding time. The position of the amide C=O vibrational mode was found to be sensitive to grinding time. The effect of mechanochemical activation of the high-defect kaolinite reduces the capacity of the kaolinite to be intercalated with formamide.  相似文献   

6.
A comparison is made between the Raman and infrared spectra of ferruginous smectite and a nontronite using both absorption and emission techniques. Raman spectra show hydroxyl stretching bands at 3572, 3434, 3362, 3220 and 3102 cm(-1). The infrared emission spectra of the hydroxyl stretching region are significantly different to the absorption spectrum. These differences are attributed to the loss of water, absent in the emission spectrum, the reduction of the samples in the spectrometer and possible phase changes. Dehydroxylation of the two minerals may be followed by the loss of intensity of the hydroxyl stretching and hydroxyl deformation frequencies. Hydroxyl deformation modes are observed at 873 and 801 cm(-1) for the ferruginous smectite, and at 776 and 792 cm(-1) for the nontronite. Raman hydroxyl deformation vibrations are found at 879 cm(-1). Other Raman bands are observed at 1092 and 1032 cm(-1), assigned to the SiO stretching vibrations, at 675 and 587 cm(-1), assigned to the hydroxyl translation vibrations, at 487 and 450 cm(-1), attributed to OSiO bending type vibrations, and at 363, 287 and 239 cm(-1). The differences in the molecular structure of the two minerals are attributed to the Al/Fe ratio in the minerals.  相似文献   

7.
Controlled rate thermal analysis (CRTA) allows the separation of adsorbed and intercalated hydrazine. CRTA displays the presence of three different types of hydrogen-bonded hydrazine in the intercalation complex: (a) The first is adsorbed loosely bonded on the kaolinite structure fully expanded by hydrazine-hydrate and liberated between approx 50 and 70 degrees C (b) The second intercalated hydrazine is lost between approx 70 and 85 degrees C. (c) The third type of intercalated-hydrazine molecule is lost in the 85-130 degrees C range. CRTA at 70 degrees C enables the removal of hydrazine-water and results in the partial collapse of the hydrazine-intercalated kaolinite structure to form a hydrazine-intercalated kaolinite. Removal of the adsorbed hydrazine enables the DRIFT spectra of the hydrazine-intercalated complex without any adsorbed hydrazine to be obtained. A band at 3626 cm(-1) attributed to the inner surface hydroxyls of kaolinite hydrogen bonded to hydrazine is observed. The intercalation of hydrazine-hydrate into kaolinite is complex and results from the different types of surface interactions of the hydrazine with the kaolinite surfaces.  相似文献   

8.
Effect of structural stress on the intercalation rate of kaolinite   总被引:6,自引:0,他引:6  
Particle size in kaolinite intercalation showed an inverse reactivity trend compared with most chemical reactions: finer particles had lower reactivity and some of the fine particles cannot be intercalated. Although this phenomenon was noted in the early 1960s and several hypotheses have been reported, there is no widely accepted theory about the unusual particle size response in the intercalation. We propose that structural stress is a controlling factor in the intercalation and the stress contributes to the higher reactivity of the coarser particles. In this study, we checked the structural deformation spectroscopically and indirectly proved the structural stress hypothesis. A Georgia kaolinite was separated into nine size fractions and their intercalations by hydrazine monohydrate and potassium acetate were investigated with X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) analyses. The apical Si-O band of kaolinite at 1115 cm(-1) shifted to 1124 cm(-1) when the mineral was intercalated to 1.03 nm by hydrazine monohydrate, and its strong pleochroic properties became much weaker. Similar reduction in pleochroism was observed on the surface OH bands of kaolinite after intercalation. Both the bending vibrations of the inner OH group at 914 cm(-1) and of the surface OH group at 937 cm(-1) shifted to 903 cm(-1) after intercalation by hydrazine. A new band for the inner OH group appeared at 3611 cm(-1) during the deintercalation of the 1.03 nm hydrazine kaolinite complex. Pleochroism change in the apical Si-O band suggested the tetrahedra had increased tilt with respect to the (001) plane. The tilt of the Si-O apical bond could occur only if the octahedra had also undergone structural rearrangement during intercalation. These changes in the octahedral and tetrahedral sheets represent some change in the manner of compensation for the structural misfit of the tetrahedral sheet and octahedral sheet. As the lateral dimensions of a kaolinite particle increases, the cumulative degree of misfit increases. Intercalation breaks the hydrogen bonds between layers and allows for the structure to reduce the accumulated stress in some other manner. The reversed size effect on intercalation probably was not caused by crystallinity differences as reported in the literature, because the Hinckley and Lietard crystallinity indices of the four clay fractions were very close to each other. Impurities, such as dickite- or nacrite-like phases are not significant in the studied sample as suggested by the XRD and IR results, they are not the main reasons for the lower reactivity of the finer particles.  相似文献   

9.
The modification of kaolinite surfaces through mechanochemical treatment has been studied using a combination of mid-IR and near-IR spectroscopy. Kaolinite hydroxyls were lost after 10 h of grinding as evidenced by the decrease in intensity of the OH stretching vibrations at 3695 and 3619 cm(-1) and the deformation modes at 937 and 915 cm(-1). Concomitantly an increase in the hydroxyl-stretching vibrations of water is observed. The mechanochemical activation (dry grinding) causes destruction in the crystal structure of kaolinite by the rupture of the O-H, Al-OH, Al-O-Si and Si-O bonds. Evidence of this destruction may be followed using near-IR spectroscopy. Two intense bands are observed in the spectral region of the first overtone of the hydroxyl-stretching vibration at 7065 and 7163 cm(-1). These two bands decrease in intensity with mechanochemical treatment and two new bands are observed at 6842 and 6978 cm(-1) assigned to the first overtone of the hydroxyl-stretching band of water. Concomitantly the water combination bands observed at 5238 and 5161 cm(-1) increase in intensity with mechanochemical treatment. The destruction of the kaolinite surface may be also followed by the loss of intensity of the two hydroxyl combination bands at 4526 and 4623 cm(-1). Infrared spectroscopy shows that the kaolinite surface has been modified by the removal of the kaolinite hydroxyls and their replacement with water adsorbed on the kaolinite surface. NIR spectroscopy enables the determination of the optimum time for grinding of the kaolinite. Further NIR allows the possibility of continual on-line analysis of the mechanochemical treatment of kaolinite.  相似文献   

10.
Hydrazine is one of the most commonly used entraining agents to penetrate kaolinite, yet the mechanism of intercalation of kaolinite by hydrazine is still in debate. The objectives of this study are to investigate the possible molecular configurations and orientations of hydrazine in the interlayer of kaolinite and the configuration changes induced by water molecules. Water molecules increased the intercalation rate and caused the expansion of the intercalation complex from 0.96 to 1.03 nm. The kinetic effect was likely the result of breaking the self-associations of hydrazine molecules and releasing more "free" hydrazine molecules for the intercalation. H-bonding caused large red shifts of the inner surface OH stretching bands from 3695 to 3626 cm(-1) in the 0.96-nm kaolinite hydrazine intercalation (KHI) complex and to 3570 and 3463 cm(-1) in the 1.03-nm KHI complex. The NH stretching bands of the hydrazine molecules in the KHI complexes became sharper and blue-shifted more than 20 cm(-1) compared with the free liquids. The symmetric NH vibrations at 3365 and 3310 cm(-1), and the NN vibration at 1092 cm(-1) became infrared inactive in the 0.96-nm KHI complex. The frequency of the SiO bands of the kaolinite in the 1.03-nm KHI complex was slightly lower than in the 0.96-nm KHI complex (5 cm(-1) shift). These IR band changes implied that hydrazine molecules have different configurations in the complexes: hydrazine molecules had an eclipsed form in the interlayer of the 0.96-nm KHI complex. The eclipsed configuration has a dipole moment of 3.31 D, which is higher than the gauche form (1.83-1.90 D). The molecule was oriented with the NN bond parallel or nearly parallel to the (001) surface of the mineral and the four H atoms of each hydrazine molecule reacted with the basal siloxane surface. When a suitable amount of water was present, it promoted the configuration change of the hydrazine molecules from the eclipsed form to the common gauche form. This gauche form was stabilized by transforming to a more polarized NH3NH tautomer structure (5.4 D). To promote an optimal interaction between hydrazine and the mineral surface, the NN bond of the hydrazine was tilted about 30 degrees from the (001) plane and caused the intercalation complex to expand from 0.96 to 1.03 nm. The eclipsed form and the tautomer were stabilized by the asymmetric interlayer environment of kaolinite. The two proposed models and reaction mechanisms match the high dipole moment requirement as found for other entraining agents. Further investigation is needed to confirm the exact configuration of hydrazine molecules and whether or not the tautomer exists.  相似文献   

11.
Near-infrared spectroscopic study of nontronites and ferruginous smectite   总被引:6,自引:0,他引:6  
The existence of life on planets such as Mars depend upon the presence of water. This water may not necessarily be as liquid or crystalline water but may be as interlayer water such as is found in smectitic clays. One group of smectites, relevant to the search for interplanetary life are those which have a high iron content, known as nontronites. Near-IR reflectance spectroscopy has been used to show the presence of water and hydroxyl units in these minerals. Three near-IR spectral regions are identified, (a) the high frequency region between 6400 and 7400 cm(-1) attributed to the first overtone of the hydroxyl stretching mode; (b) the 4800-5400 cm(-1) region attributed to water combination modes; and (c) the 4000-4800 cm(-1) region attributed to the combination of the stretching and deformation modes of the FeFeOH units of nontronite. Two types of hydroxyl groups were identified using near-IR spectroscopy, hydroxyl units coordinated to the iron, and hydroxyl groups from water in the nontronite structure. The first hydroxyls are characterised by several bands, firstly in the 7055-7098 cm(-1) region assigned to the first overtone of the AlFeOH stretching unit, secondly in the 6958-6878 cm(-1) region attributed to the FeFeOH unit. The overtone of the hydroxyl stretching frequency of water was observed at around 6800 cm(-1). These observations show that nontronites can be a source of water that may support life.  相似文献   

12.
Raman microscopy has been used to study low and high defect kaolinites and their potassium acetate intercalated complexes at 298 and 77 K. Raman spectroscopy shows significant differences in the spectra of the hydroxyl-stretching region of the two types of kaolinites, which is also reflected in the spectroscopy of the hydroxyl-stretching region of the intercalation complexes. Additional bands to the normally observed kaolinite hydroxyl stretching frequencies are observed for the low and high defect kaolinites at 3605 and 3602 cm(-1) at 298 K. Upon cooling to liquid nitrogen temperature, these bands are observed at 3607 and 3604 cm(-1), thus indicating a weakening of the hydrogen bond formed between the inner surface hydroxyls and the acetate ion. Upon cooling to liquid nitrogen temperature, the frequency of the inner hydroxyls shifted to lower frequencies. Collection of Raman spectra at liquid nitrogen temperature did not give better band separation compared to the room temperature spectra as the bands increased in width and shifted closer together.  相似文献   

13.
The Raman spectra at 77 K of the hydroxyl stretching of kaolinite were obtained along the three axes perpendicular to the crystal faces. Raman bands were observed at 3616, 3658 and 3677 cm(-1) together with a distinct band observed at 3691 cm(-1) and a broad profile between 3695 and 3715 cm(-1). The band at 3616 cm(-1) is assigned to the inner hydroxyl. The bands at 3658 and 3677 cm(-1) are attributed to the out-of-phase vibrations of the inner surface hydroxyls. The Raman spectra of the in-phase vibrations of the inner-surface hydroxyl-stretching region are described in terms of transverse and longitudinal optic splitting. The band at 3691 cm(-1) is assigned to the transverse optic and the broad profile to the longitudinal optic mode. This splitting remained even at liquid nitrogen temperature. The transverse optic vibration may be curve resolved into two or three bands, which are attributed to different types of hydroxyl groups in the kaolinite.  相似文献   

14.
Controlled rate thermal analysis (CRTA) technology made possible the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites. X-ray diffraction shows that the CRTA-treated formamide-intercalated kaolinites remain expanded after CRTA treatment. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites with both intercalated and adsorbed formamide. An intense band is observed at 3629 cm(-1), attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm(-1) and are attributed to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl stretching band of the inner hydroxyl is readily observed at 3621 cm(-1) in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. The Raman bands of the formamide in the CRTA-treated intercalated kaolinites are readily observed. Copyright 2001 Academic Press.  相似文献   

15.
Kaolinite has been mechanochemically activated by dry grinding for periods of time up to 10 h. The kaolinite was then intercalated with potassium acetate and the changes in the structure followed by DRIFT spectroscopy. Intercalation of the kaolinite with potassium acetate is difficult and only the layers, which remain hydrogen bonded, are intercalated. The mechanochemical activation of the kaolinite may be followed by the loss of intensity of the hydroxyl-stretching vibrations. The intensity of the 3695 and 3619 cm(-1) bands reach a minimum after 10 h of grinding. The observation of a band at 3602 cm(-1) is indicative of the intercalation of the kaolinite with potassium acetate. The degree of intercalation decreases with mechanochemical treatment. The effect of exposure of the intercalated mechanochemically activated kaolinite to moist air results in de-intercalation. The effect of the mechanochemical treatment is loss of layer stacking, which prevents the intercalation of the kaolinite.  相似文献   

16.
高岭石/甲酰胺插层的Raman和DRIFT光谱   总被引:9,自引:0,他引:9  
用Raman和漫反射红外光谱研究高岭石/甲酰胺插层反应机理及插层作用对高岭石微结构的影响.  相似文献   

17.
Uranyl micas are based upon (UO(2)PO(4))(-) units in layered structures with hydrated counter cations between the interlayers. Uranyl micas also known as the autunite minerals are of general formula M(UO2)2(XO4)2 x 8-12H2O where M may be Ba, Ca, Cu, Fe(2+), Mg, Mn(2+) or 1/2(HA1) and X is As or P. The structures of these minerals have been studied using Raman microscopy at 298 and 77K. Six hydroxyl stretching bands are observed of which three are highly polarised. The hydroxyl stretching vibrations are related to the strength of hydrogen bonding of the water OH units. Bands in the Raman spectrum of autunite at 998, 842 and 820 cm(-1) are highly polarised. Low intensity band at 915 cm(-1) is attributed to the nu(3) antisymmetric stretching vibration of (UO(2))(2+) units. The band at 820 cm(-1) is attributed to the nu(1) symmetric stretching mode of the (UO(2))(2+) units. The (UO(2))(2+) bending modes are found at 295 and 222 m(-1). The presence of phosphate and arsenate anions and their isomorphic substitution are readily determined by Raman spectroscopy. The collection of Raman spectra at 77K enables excellent band separation.  相似文献   

18.
Infrared spectroscopy has been used to characterise synthesised hydrotalcites of formula Mg(x)Zn(6 - x)Cr2(OH)16(CO3) x 4H2O and Ni(x)Co(6 - x)Cr2(OH)16(CO3) x 4H2O. The infrared spectra are conveniently subdivided into spectral features based (a) upon the carbonate anion (b) the hydroxyl units (c) water units. Three carbonate antisymmetric stretching vibrations are observed at around 1358, 1387 and 1482 cm(-1). The 1482 cm(-1) band is attributed to the CO stretching band of carbonate hydrogen bonded to water. Variation of the intensity ratio of the 1358 and 1387 cm(-1) modes is linear and cation dependent. By using the water bending band profile at 1630 cm(-1) four types of water are identified (a) water hydrogen bonded to the interlayer carbonate ion (b) water hydrogen bonded to the hydrotalcite hydroxyl surface (c) coordinated water and (d) interlamellar water. It is proposed that the water is highly structured in the hydrotalcite interlayer as it is hydrogen bonded to both the carbonate anion, adjacent water molecules and the hydroxyl surface.  相似文献   

19.
Raman spectroscopy of selected lead minerals of environmental significance   总被引:2,自引:0,他引:2  
The Raman spectra of the minerals cerrusite (PbCO(3)), hydrocerrusite (Pb(2)(OH)(2)CO(3)), phosgenite (Pb(2)CO(3)Cl(2)) and laurionite (Pb(OH)Cl) have been used to qualitatively determine their presence. Laurionite and hydrocerrusite have characteristic hydroxyl stretching bands at 3506 and 3576 cm(-1). Laurionite is also characterised by broad low intensity bands centred at 730 and 595 cm(-1) attributed to hydroxyl deformation vibrations. The minerals cerrusite, hydrocerrusite and phosgenite have characteristic CO (nu(1)) symmetric stretching bands observed at 1061, 1054 and 1053 cm(-1). Phosgenite displays complexity in the CO (nu(3)) antisymmetric stretching region with bands observed at 1384, 1327 and 1304 cm(-1). Cerrusite shows bands at 1477, 1424, 1376 and 1360 cm(-1). The hydrocerrusite Raman spectrum has bands at slightly different positions from cerrusite, with bands at 1479, 1420, 1378 and 1365 cm(-1). The complexity of the nu(3) region is also reflected in the nu(2) and nu(4) regions with the observation of multiple bands. Laurionite is characterised by two intense bands at 328 and 272 cm(-1) attributed to PbO and PbCl stretching bands. Importantly, all four minerals are characterized by their Raman spectra, enabling the mineral identification in leachates and contaminants of environmental significance.  相似文献   

20.
A dickite from Tarifa (Spain) was used to study the influence of the intercalation and the later deintercalation of hydrazine on the dehydroxylation process. The dehydroxylation of the untreated dickite occurs through three overlapping endothermic stages whose DTA peaks are centred at 586, 657 and 676°C. These endothermic effects correspond, respectively, to the loss of the inner-surface, the inner hydroxyl groups, and the loss of the water molecules, product of dehydroxylation process, which has been trapped in the framework of the dehydroxylated dickite. The intercalation of hydrazine in the interlayer space of dickite and the later deintercalation affect the dehydroxylation process. It occurs through only two endothermic stages which DTA peaks are centred at 575 and 650°C. The first corresponds to the simultaneous loss of both the inner and the inner-surface hydroxyl groups, whereas the second one is analogous to that at 676°C observed in the DTA curve of untreated dickite. These effects appear shifted to lower temperatures compared to those observed in the untreated dickite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号