首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end composition were examined for mixtures of {water (1) + propionic acid (2) + octanol or nonanol or decanol or dodecanol (3)} at T = 298.15 K and 101.3 ± 0.7 kPa. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

2.
(Liquid + liquid) equilibrium (LLE) data for the {water + acetic acid + dibasic esters mixture (dimethyl adipate + dimethyl glutarate + dimethyl succinate)} system have been determined experimentally at T = (298.2, 308.2, and 318.2) K. Complete phase diagrams were obtained by determining solubility curve and tie-line data. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The UNIFAC model was used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data between CH2, CH3COO, CH3, COOH, and H2O functional groups. Distribution coefficients and separation factors were compared with previous studies.  相似文献   

3.
Liquid–liquid equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {(water (1) + levulinic acid (2) + dimethyl succinate or dimethyl glutarate or dimethyl adipate (3)} at 298.15 K and 101.3 ± 0.7 kPa. The reliability of the experimental tie-line data was confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. The LLE data were correlated fairly well with UNIQUAC and NRTL models, indicating the reliability of the UNIQUAC and NRTL equations for these ternary systems. The best results were achieved with the NRTL equation, using non-randomness parameter (α = 0.3) for the correlation. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvents.  相似文献   

4.
(Liquid + liquid) equilibrium (LLE) data for ternary system {heptane (1) + m-xylene (2) + N-formylmorpholine (3)} have been determined experimentally at temperatures ranging from 298.15 K to 353.15 K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer-Tobias and Bachman methods. The universal quasichemical activity coefficient (UNIQUAC) and The non-random two liquids equation (NRTL) were used to correlate the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that UNIQUAC and NRTL used for LLE could provide a good correlation. Distribution coefficients, separation factors, and selectivity were evaluated for the immiscibility region.  相似文献   

5.
In this paper, the azeotropic behaviour of the (benzene + cyclohexane + chlorobenzene) ternary mixture was experimentally investigated with the aim of enhancing the knowledge for the feasible use of chlorobenzene as an entrainer for the azeotropic distillation of the binary azeotrope. Such a study has not been reported in the literature to the best of the authors’ knowledge. (Vapour + liquid) equilibria data for (benzene + cyclohexane + chlorobenzene) at 101.3 kPa were obtained with a Othmer-type ebulliometer. Data were tested and considered thermodynamically consistent. The experimental results showed that this ternary mixture is completely miscible and exhibits an unique binary homogeneous azeotrope, an unstable node at the conditions studied, and the propitious topological characteristics (residual curve map and relative volatility) to be separated. Satisfactory results were obtained for the correlation of equilibrium compositions with the UNIQUAC activity coefficients model and also for prediction with the UNIFAC method. In both cases, low root mean square deviations of the vapour mole fraction and temperature were calculated. The capability of chlorobenzene as a modified distillation agent at atmospheric condition is discussed in terms of the thermodynamic topological analysis. A conceptual distillation scheme with reversed volatility is proposed to separate the azeotropic mixture. In order to reduce the operational cost requirements of the sequence of columns proposed, the range for optimal reflux and the ratio for feed flow conditions were studied.  相似文献   

6.
Consistent vapour–liquid equilibrium data for the ternary systems diisopropyl ether + isopropyl alcohol + 2,2,4-trimethylpentane and diisopropyl ether + isopropyl alcohol + n-heptane are reported at 101.3 kPa. The vapour–liquid equilibrium data have been correlated by Wilson, NRTL and UNIQUAC equations. The ternary systems do not present ternary azeotropes.  相似文献   

7.
Isobaric vapor–liquid equilibrium (VLE) data of the reactive quaternary system ethanol (1) + water (2) + ethyl lactate (3) + lactic acid (4) have been determined experimentally. Additionally, the reaction equilibrium constant was calculated for each VLE experimental data. The experimental VLE data were correlated using the UNIQUAC equation to describe the chemical and phase equilibria simultaneously. For some of the non-reactive binary systems, UNIQUAC binary interaction parameters were obtained from the literature. The rest of the binary UNIQUAC parameters were obtained by correlating the experimental quaternary VLE data obtained in this work. A maximum pressure azeotrope at high water concentration for the binary reactive system ethyl lactate + water has been calculated.  相似文献   

8.
(Solid + liquid) phase diagrams, SLE have been determined for (octan-1-ol, or nonan-1-ol, or decan-1-ol, or undecan-1-ol + benzonitrile) and for (hexylamine, or octylamine, or decylamine, or 1,3-diaminopropane + benzonitrile) using a cryometric dynamic method at atmospheric pressure. Simple eutectic systems with complete immiscibility in the solid phase and complete miscibility on the liquid phase have been observed. The solubility decreases with an increase of the number of carbon atoms in the alkan-1-ol, or amine chain. The temperature of the eutectic points increases and shifts to lower alkan-1-ol, or amine mole fractions as the alkyl chain length of the alkan-1-ol, or amine increases. The higher intermolecular interaction was observed for the (alkan-1-ol + benzonitrile) systems.  相似文献   

9.
(Liquid-liquid) equilibrium (LLE) data of the solubility curves and tie-line compositions have been determined for mixtures of (water + 3-hydroxy-2-butanone + ethyl ethanoate) at 298.15 K, 308.15 K and 318.15 K and 101.3 kPa. Distribution coefficients and separation factors have been evaluated for the immiscibility region. The reliability of the experimental tie-lines has been confirmed by using Othmer-Tobias correlation. The LLE data of the ternary systems have been predicted by UNIFAC method.  相似文献   

10.
(Liquid + liquid) equilibrium (LLE) data for the ternary system of (water + butyric acid + oleyl alcohol) at T = (298.15, 308.15, and 318.15) K are reported. Complete phase diagrams were obtained by determining solubility and the tie-line data. The reliability of the experimental tie lines was confirmed by using Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium data. The phase diagrams for the ternary mixtures including both the experimental and correlated tie lines are presented. Distribution coefficients and separation factors were evaluated for the immiscibility region. A comparison of the solvent extracting capability was made with respect to distribution coefficients, separation factors, and solvent-free selectivity bases for T = (298.15, 308.15, and 318.15) K. It is concluded that oleyl alcohol may serve as an adequate solvent to extract butyric acid from its dilute aqueous solutions.  相似文献   

11.
Binary (vapour + liquid) equilibrium data were measured for the {pentafluoroethane (HFC-125) + dimethyl ether (DME)} system at temperatures from (313.15 to 363.15) K. These experiments were carried out with a circulating-type apparatus with on-line gas chromatography. The experimental data were correlated well by the Peng-Robinson Stryjek-Vera equation of state using the Wong-Sandler mixing rules.  相似文献   

12.
Liquid-liquid equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {(water (1) + butyric acid (2) + diethyl succinate or diethyl glutarate or diethyl adipate (3)} at 298.2 K and 101.3 ± 0.7 kPa. The relative mutual solubility of butyric acid is higher in the diethyl succinate or diethyl glutarate or diethyl adipate layers than water layers. The consistency of the experimental tie-lines was determined through the Othmer-Tobias correlation equation. The LLE data were correlated with NRTL model, indicating the reliability of the NRTL equations for these ternary systems. The best results were achieved with the NRTL equation, using non-randomness parameter (α = 0.3) for the correlation. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvents.  相似文献   

13.
Experimental (liquid + liquid) equilibria involving ionic liquids {1,3-dimethylimidazolium methyl sulfate (MMIM MeSO4)}, {2-propanol + ethyl acetate + 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6)} and {2-propanol + ethyl acetate + 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIM PF6)} were carried out to separate the azeotropic mixture ethyl acetate and 2-propanol. Selectivity and distribution ratio values, derived from the tie-lines data, were presented in order to analyze the best separation solvent in a liquid extraction process. Experimental (liquid + liquid) equilibria data were compared with the correlated values obtained by means of the NRTL, Othmer-Tobias and Hand equations. These equations were verified to accurately correlate the experimental data.  相似文献   

14.
Isobaric vapor–liquid equilibrium data (VLE) at 101.325 kPa have been determined in the miscible region for 1,1-dimethylethoxy-butane (BTBE) + methanol + water and 1,1-dimethylethoxy-butane (BTBE) + ethanol + water ternary systems, and for their constituent binary systems, methanol + BTBE and ethanol + BTBE. Both binary systems show an azeotrope at the minimum boiling point. In the ternary system BTBE + methanol + water no azeotrope has been found, however, the system BTBE + ethanol + water might form a ternary azeotrope near the top of the binodal. Thermodynamically consistent VLE data have been satisfactorily correlated using the UNIQUAC, NRTL and Wilson equations for the activity coefficient of the liquid phase. Temperature and vapor phase compositions have been compared with those calculated by the group-contribution methods of prediction ASOG, and the original and modified UNIFAC. Predicted values are not in good agreement with experimental values.  相似文献   

15.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + cyclohexanone) were measured under atmospheric pressure and at T = (293.2, 298.2 and 303.2) K. Phase diagrams were obtained by determining solubility and tie-line data. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated over the immiscibility regions.  相似文献   

16.
The present study experimentally demonstrated clathrate hydrate formation in the systems of (methane + water + each of the three methylcyclohexanone isomers, i.e., 2-methylcyclohexanone, 3-methylcyclohexanone, and 4-methylcyclohexanone) and measured the first data of the quadruple (water rich liquid + hydrate + methylcyclohexanone rich liquid + methane rich vapor) equilibrium pressure and temperature conditions in these systems over the temperatures from T=273 K to T=281 K. In the three systems with methylcyclohexanone, the measured equilibrium pressure at each given temperature is ∼1.3 MPa lower than that in a structure-I hydrate forming (methane + water) system without any methylcyclohexanone, which suggests the formation of structure-H hydrates with methylcyclohexanones as large-molecule guest substances. Among the three systems, 3-methylcyclohexanone provides the highest equilibrium pressure, and 2-methylcyclohexanone, the lowest.  相似文献   

17.
Isobaric vapor–liquid equilibria were measured for three binary systems of water + propyleneglycol monomethyl ether (PGME), water + propyleneglycol monomethyl ether acetate (PGMEA), and PGME + PGMEA at 93.3, 53.3, 26.7 kPa. The equipment used was a modified Rogalski-Malanoski equilibrium still and an ebulliometer. The NRTL equation correlated the experimental binary data with good accuracy.  相似文献   

18.
Liquid-liquid equilibrium data for mixtures of (ethylene carbonate + benzene + cyclohexane) at temperatures 303.15 and 313.15 K and (ethylene carbonate + BTX + cyclohexane) at temperature 313.15 K are reported, where the BTX is benzene, toluene and m-xylene. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography. The selectivity factors and partition coefficients of ethylene carbonate for the extraction of benzene, toluene and m-xylene from (ethylene carbonate + BTX + cyclohexane) are calculated and presented. The obtained results are compared with the selectivity factors and partition coefficients of ethylene carbonate for the extraction of benzene from (ethylene carbonate + benzene + cyclohexane). The liquid-liquid equilibrium data were correlated with the UNIQUAC and NRTL activity coefficient models. The phase diagrams for the studied mixtures are presented and the correlated tie line results have been compared with the experimental data. The comparisons indicate the applicability of the UNIQUAC and NRTL activity coefficients model for liquid-liquid equilibrium calculations of the studied mixtures. The tie line data of the studied mixtures also were correlated using the Hand method.  相似文献   

19.
Total vapour pressures, measured at the temperature 313.15 K, are reported for the ternary mixture (N,N-dimethylacetamide + methanol + water), and for binary constituents (N,N-dimethylacetamide + methanol) and (N,N-dimethylacetamide + water). The present results are compared with previously obtained data for binary mixtures (amide + water) and (amide + methanol), where amide=N-methylformamide, N,N-dimethylformamide, N-methyl-acetamide, 2-pyrrolidinone and N-methylpyrrolidinone. Moreover, it was found that excess Gibbs free energy of mixing for binary mixtures varies roughly linearly with the molar volume of amide.  相似文献   

20.
Isobaric vapor–liquid equilibrium data at 50, 75, and 94 kPa have been determined for the binary system ETBE + propan-1-ol, in the temperature range 325–368 K. The measurements were made in a vapor–liquid equilibrium still with circulation of both phases. Mixing volumes have been also determined from density measurements at 298.15 K and 101.3 kPa and, at the same temperature and pressure, the dependence of interfacial tension on concentration has been measured using the pendant drop technique. According to experimental results, the mixture presents positive deviation from ideal behavior and azeotropy is present at 75 and 94 kPa. No azeotrope was detected at 50 kPa. The mixing volumes of the system are negative over the whole mole fraction range, and the interfacial tensions exhibit negative deviation from the linear behavior. The activity coefficients and boiling points of the solutions were well correlated with the mole fraction using the Wohl, Wilson, NRTL, UNIQUAC equations. Excess volume data and interfacial tensions were correlated using the Redlich–Kister model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号