首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Through femtosecond (fs) laser pulse irradiation (pulse duration: 65 fs, central wavelength: 800 nm, and repetition rate: 250 Hz), we investigate the morphological evolution of fs laser-induced periodic surface structure on Au and Pt, called a nanostructure-covered large-scale wave (NC-LSW) with a period of tens of microns, densely covered by iterating stripe patterns of nanostructures and microstructures. We show that the surface morphology of NC-LSW crucially depends on the fluence of the laser, the number of irradiating pulses, and the incident beam angle. Our experimental observations allow us to establish a three-step model for the NC-LSW formation: the formation of laser-induced surface unevenness, inhomogeneous energy deposition due to the interference between the incident light and the scattered field, and nonuniform energy deposition due to shielding by the peaks of LSW.  相似文献   

2.
In this paper, theoretical and experimental investigations are performed to understand the effect of laser energy accumulation on morphologies of femtosecond laser-induced periodic surface structures (LIPSSs). Based on energy accumulation effect we put forward, scanning velocity, distance of two adjacent scan lines and pulsed laser energy density are optimized to fabricate high-uniform and large-area period surface structures for the first time. Our theoretical results can offer clues to choose experiment parameters in order to obtain high-quality LIPSSs which have extensively emerging and potential applications in optoelectronics, phononics and so on.  相似文献   

3.
The periodic ripple structures on wolfram and titanium surfaces are induced experimentally by linear polarized femtosecond laser pulses at small incident angles. The structural features show a material difference in the s- and p-polarized laser irradiation. The interspace between the ripples increases significantly for p-polarized laser irradiation when it exceeds a threshold angle, and the ripples' periodicities are larger than the wavelength of the incident p-polarized femtosecond laser; however, no significant change in the period of the ripples is observed with increasing incident angle for s-polarized laser irradiation. To explain these phenomena we propose a resonant absorption mechanism, by which the experimental observations can be interpreted.  相似文献   

4.
Self-organized periodic surface structures on ZnO have been observed after multiple linearly polarized femtosecond laser pulse irradiation. The observed self-organized structures are attributed to the second harmonics in the sample surface excited by the incident laser. The grating orientation could be adjusted by the laser polarization direction. We also find that fluences play an important role in the formation of self-organized nanostructures.  相似文献   

5.
We present periodic ripples and arrays of protrusions formed on the surface of silicon after irradiation by low-fluence linearly polarized femtosecond laser pulses. Laser-induced periodic surface structures (LIPSS) are observed for irradiation at center wavelengths of 800, ∼ 1300, and ∼ 2100 nm, with the structure periods somewhat less than the incident wavelengths in air. Additionally, we observe structures with spatial periods substantially less than the incident laser wavelengths. These sub-wavelength periodic structures form only when the photon energy is less than the silicon bandgap energy. We discuss a number of factors which may contribute to the generation of this surface morphology.  相似文献   

6.
李志明  王玺  聂劲松 《物理学报》2017,66(10):105201-105201
基于Sipe-Drude模型和表面等离子体激元(SPP)的干涉理论分别对单脉冲飞秒激光诱导硅表面形成低频率周期性波纹进行分析研究.探究了波长800 nm、脉宽150 fs的单个飞秒激光烧蚀硅造成不同激发水平下波纹形貌的变化,考虑到材料的光学性质变化(由Drude模型得到的介电常数变化),引入包含双温方程的电子数密度模型.计算结果表明,Sipe-Drude和SPP理论都适用于分析和解释高激发态下周期性波纹,但Sipe-Drude理论更适合分析更为广泛的周期性波纹结构.同时,波纹延伸方向总是垂直于入射激光偏振方向,其空间周期略小于激光波长,并受到入射激光通量的影响.在激光通量为0.38 J/cm~2时,波纹周期达到最小值.另外,还得到了不同入射角度的波纹周期变化情况,并在不同偏振态下随入射角度增大时波纹周期呈现相反的变化趋势.该研究对于理解飞秒激光造成硅表面形成周期结构及其在加工硅材料领域具有重要参考意义.  相似文献   

7.
利用波长为800 nm的飞秒激光,在空气和去离子水中诱导钛表面形成不同的周期条纹结构。在空气中,激光能量密度为0.265 J/cm2时,钛表面主要形成周期为500~560 nm低空间频率条纹结构;激光能量密度为0.102 J/cm2时,主要形成的是周期为220~340 nm高空间频率条纹结构。两种条纹均垂直于入射激光偏振方向,且条纹周期随着脉冲重叠数的增大而增大。在水中,除形成垂直激光偏振方向、周期为215~250 nm的高空间频率条纹结构,还形成了平行于激光偏振方向且周期约为入射激光波长八分之一的高空间频率条纹结构。利用表面等离子体理论、二次谐波及Sipe理论对各种周期条纹结构的形成机理进行分析,发现周期条纹结构的形成与钛表面氧化层有密切的关系。  相似文献   

8.
Femtosecond laser nano-processing by enhanced light scattered from nanospheres has received much attention. Enhanced scattered near field enables us to ablate nanoholes at nanometer scales below the diffraction limit. In addition, the interference between the scattered far field and the irradiated laser enables us to fabricate spatially controlled periodic surface structures. In this paper, we simulated the time evolution of scattered near field and far field during the free electron excitation in silicon (Si) by femtosecond laser irradiation. The optical property of Si changes from dielectric to metal-like Si due to the increase of the free electron number density excited by femtosecond laser pulse. It is elucidated that the scattered field of Si shifts from Mie scattering to plasmonic scattering during laser irradiation. We achieved the optimal free electron density and laser intensity for precisely controlled periodic surface structures fabrication. We explained the temporal behavior of the scattering near field and far field from the standpoint of dielectric function of the materials.  相似文献   

9.
The abrupt transition from low-spatial-frequency laser-induced periodic surface structure (LSFL) to high-spatial-frequency laser-induced periodic surface structure (HSFL) in single-crystal superalloy CMSX-4 during femtosecond laser irradiation has been reported. Microstructural investigations indicate that the transition was initiated by the generation of new grooves on the main ridges of LSFL ripples. This transition resulted in the period of HSFL nearly equal to half of LSFL period. Furthermore, the relationship between both LSFL and HSFL and their parametric dependence was established. The microstructural observation of the abrupt transition provides a morphological evidence of second harmonic generation being responsible for the formation of HSFL.  相似文献   

10.
Periodic surface nanostructures are observed on Ti3+:Al2O3 single crystals that have been irradiated by a single focused beam from a femtosecond pulsed laser (wavelength: 800 nm; pulse duration: 130 and 152 fs). Atomic force microscopy images of single-ablated zones and modified structures created by fixing and translating samples through the focal region of a linearly polarized laser beam reveal self-organized periodic surface nanostructures (ripples) with a subwavelength spacing, which are oriented perpendicular to the electric-field vector of the laser beam. The period of the subwavelength ripples obtained by linearly polarized laser irradiation varies from ∼λ/5 to 2λ/5 (λ: incident laser wavelength) depending on the laser pulse energy. This phenomenon can be explained by assuming that the incident light field interferes with the electric field of electron plasma waves propagating inside the material; this interference periodically modulates the electron plasma density and modifies the surface ablation. In addition, for the first time, we observe screw-shaped nanostructures in the focal spot of circularly polarized beam irradiation. The morphology of these nanostructures appears to reflect the circular polarization of the laser light.  相似文献   

11.
Zhao QZ  Malzer S  Wang LJ 《Optics letters》2007,32(13):1932-1934
The evolution of surface morphology of tungsten irradiated by single-beam femtosecond laser pulses is investigated. Ripplelike periodic structures have been observed. The period of these ripples does not show a simple relation to the wavelength and angle of incidence. The orientation of ripples is aligned perpendicularly to the direction of polarization for linearly polarized light. Surprisingly, we find that the alignment of the ripple structure turned left or right by 45 degrees with respect to the incident plane when using right and left circularly polarized light, respectively. The period of the ripple can be controlled by the pulse energy, the number of pulses, and the incident angle. We find a clear threshold for the formation as a function of pulse energy and number of pulses. The mechanism for the ripple formation is discussed, as well as potential applications in large-area structuring of metals.  相似文献   

12.
Laser-induced periodic surface structures (LIPSSs) were observed on the sidewalls of 300-μm-diameter holes trepanned on cemented tungsten carbide using femtosecond laser pulses at a wavelength of 800 nm. For a circularly polarized beam, LIPSSs were formed at a period of 300 nm and oriented perpendicularly to the plane of incidence on the sidewalls. For a linearly polarized beam, LIPSS formation was dependent on the relative angle α between the polarization direction and the plane of incidence. For relative angles α from 0° to 70° and from 110° to 180°, LIPSS spacing was 300 nm. However, there were two types of LIPSSs coexisting from 70° to 110°. One had a spacing of 120 nm and the other had a spacing that varied from 500 to 760 nm. It was found that the orientation angle of LIPSSs measured between the LIPSS orientation and the plane of incidence had a nonlinear dependence on α. To understand this dependence, a model was proposed in which LIPSSs are assumed to align perpendicularly to the direction of the absorbed electric field lying in the tangent plane of the sidewall of a drilled hole. The calculated results from this model showed good agreement with the experimental results.  相似文献   

13.
The formation of nanostructures on the surface of single-crystal silicon carbide under ablation by femtosecond laser pulses in liquid ethanol has been experimentally investigated. A 800-nm Ti:sapphire laser with a pulse duration of 210 fs was used as a radiation source. Single-scan irradiation of SiC surface leads to the formation of periodic grooves with a period of about 200 nm. Double exposure with a sample rotation by 90° between the scans gives rise to a regular array of nanostructures with average lateral size of 10 to 15 nm. It is determined that the wettability of nanostructured SiC surface is improved in comparison with the initial surface. It is shown that nanostructuring of SiC surface leads to an increase in the red light transmission by a factor of more than 60.  相似文献   

14.
Nanohole fabrication process with gold nanoparticles irradiated by femtosecond laser at different incident angles is investigated. Nanoparticles with diameter of 200 nm and laser irradiation with center wavelength of 800 nm are used in the present study. The analysis of the electromagnetic field distribution in the near-field zone of the particle is made by simulations based on finite-differential time domain (FDTD) method. It is shown that when gold nanoparticle is irradiated by laser pulse surface plasmon excitation can be induced, and associated with it, high-intensity near field is produced in a limited area around the particle. It is found that the change of the irradiation conditions by means of irradiation from various incident directions gives a possibility of laser nanoprocessing with tunable characteristics. Our results show that enhanced optical intensity is able to be induced on the substrate surface regardless of incident direction of the laser due to the image charge interaction with the substrate. Furthermore, the use of p-polarized laser irradiation at a certain angle gives a minimum of the spatial dimensions of the enhanced zone on the substrate which is about two times smaller than that obtained at normal incidence.  相似文献   

15.
Periodic nanostructures are observed inside silica glass after irradiation by a focused beam of a femtosecond Ti:sapphire laser. Backscattering electron images of the irradiated spot reveal a periodic structure of stripelike regions of approximately 20 nm width with a low oxygen concentration, which are aligned perpendicular to the laser polarization direction. These are the smallest embedded structures ever created by light. The period of self-organized grating structures can be controlled from approximately 140 to 320 nm by the pulse energy and the number of irradiated pulses. The phenomenon is interpreted in terms of interference between the incident light field and the electric field of the bulk electron plasma wave, resulting in the periodic modulation of electron plasma concentration and the structural changes in glass.  相似文献   

16.
A simple optical interference method for the fabrication of simply periodic and periodic with a substructure on poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) using femtosecond laser interference patterns is demonstrated. The femtosecond laser pulse was split by a diffractive beam splitter and overlapped with two lenses. Homogeneous periodic arrays could be fabricated even using a single laser pulse. In addition, multipulse irradiation resulted in reproducible sub-wavelength ripples oriented perpendicularly to the laser polarization with spatial period from 170 to 220 nm (around one-fourth of the laser wavelength). In addition, the observed size of the spatial period was not affected by the number of incident laser pulses or accumulated energy density. Using high energy pulses it was possible to completely remove the PEDOT:PSS layer without inducing damage to the underneath substrate.  相似文献   

17.
Spontaneous nanostructure formations on roughened and smooth silicon surface by the femtosecond laser irradiation with the repetition rate of 100 kHz were systematically studied. In addition to the widely accepted so-called coarse ripple, which has the period analogous to the wavelength of the laser beam and aligns perpendicularly to the electric field of the incident laser beam, the ripple which has the period similar to the wavelength of the incident laser beam but aligns parallel to the electric field of the laser beam was observed on the roughened surface for the lower fluence and the higher number of pulse irradiation. Furthermore, the ensemble of dots formed by the enhancement of the local electric field was found on the roughened surface. This structure is preferentially formed around the scratches aligned perpendicularly to the electric field of the laser beam. These novel nanostructures are considered to be peculiar to the femtosecond laser irradiation and open the possibilities for precise control of the spontaneous nanostructure formation by femtosecond laser irradiation.  相似文献   

18.
In this paper, we find, for the first time, that optical absorptance of metals can be significantly enhanced by a new type of surface structures following femtosecond laser ablation, namely nanostructure-covered periodic surface structures. Especially, the effect of the nanostructure-covered periodic structures on optical absorptance of metals has a clear polarization dependence that suggests a more controllable way to modify material optical properties with femtosecond laser processing. PACS 81.40.Wx; 78.20.Ci; 81.07.-b; 61.80.-x  相似文献   

19.
The interactions between femtosecond (fs) laser pulses and a thin Au film deposited on a silica glass substrate were systematically investigated based on experimental data. Different structures, including microholes, nanoholes, and nanobumps, are obtained when pulses with different energies are incident on the surface of a gold film. The experimental results are discussed according to specific experimental parameters. Two physical models were constructed in order to explain the experimental results. The formation of nanoholes in a silica substrate is attributed to etching by higher order harmonic generations (HHG) when the femtosecond laser pulse interacts with the generated plasma layer, while the formation of nanobumps on the surface of an Au film is attributed to the elastic and plastic characteristics of the metal film under laser pulse irradiation.  相似文献   

20.
Fabrication of superhydrophobic surfaces induced by femtosecond laser is a research hotspot of superhydrophobic surface studies nowadays. We present a simple and easily-controlled method for fabricating stainless steel-based superhydrophobic surfaces. The method consists of microstructuring stainless steel surfaces by irradiating samples with femtosecond laser pulses and silanizing the surfaces. By low laser fluence, we fabricated typical laser-induced periodic surface structures (LIPSS) on the submicron level. The apparent contact angle (CA) on the surface is 150.3°. With laser fluence increasing, we fabricated periodic ripples and periodic cone-shaped spikes on the micron scale, both covered with LIPSS. The stainless steel-based surfaces with micro- and submicron double-scale structure have higher apparent CAs. On the surface of double-scale structure, the maximal apparent CA is 166.3° and at the same time, the sliding angle (SA) is 4.2°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号