首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a novel phase-resolved optical coherence tomography (OCT) and optical Doppler tomography (ODT) system that uses phase information derived from a Hilbert transformation to image blood flow in human skin with fast scanning speed and high velocity sensitivity. Using the phase change between sequential scans to construct flow-velocity imaging, this technique decouples spatial resolution and velocity sensitivity in flow images and increases imaging speed by more than 2 orders of magnitude without compromising spatial resolution or velocity sensitivity. The minimum flow velocity that can be detected with an axial-line scanning speed of 400 Hz and an average phase change over eight sequential scans is as low as 10 microm/s, while a spatial resolution of 10 microm is maintained. Using this technique, we present what are to our knowledge the first phase-resolved OCT/ODT images of blood flow in human skin.  相似文献   

2.
Real-time, ultrahigh-resolution optical coherence tomography (OCT) is demonstrated in the 1.4-1.7-microm wavelength region with a stretched-pulse, passively mode-locked, Er-doped fiber laser and highly nonlinear fiber. The fiber laser generates 100-mW, linearly chirped pulses at a 51-MHz repetition rate. The pulses are compressed and then coupled into a normally dispersive highly nonlinear fiber to generate a low-noise supercontinuum with a 180-nm FWHM bandwidth and 38 mW of output power. This light source is stable, compact, and broadband, permitting high-speed, real-time, high-resolution OCT imaging. In vivo high-speed OCT imaging of human skin with approximately 5.5-microm resolution and 99-dB sensitivity is demonstrated.  相似文献   

3.
A brief introduction to Optical Coherence Tomography (OCT) is presented, stressing the origin of the tomographic signal and the detection methods defining various modalities of the technique. The parameters of the tomographs, such as axial and lateral resolution, wavelength and intensity of the probing light, imaging range, time of examination, and sensitivity are then defined, and a paradigm for interpreting the OCT tomograms provided. The second part of the article comprises a review of the utilisation of OCT for structural examination of artworks, illustrated with some representative results. Applications to the structural imaging of semi-transparent subsurface layers such as varnishes and glazes, of underdrawings and of reverse painting on glass, are described first, and then applications in the examination of the structure and state of preservation of historic glass, jade, glazed porcelain and faience are discussed. Finally, the use of OCT combined with LIBS analysis and laser ablation of surface layers is presented.  相似文献   

4.
We describe a novel imaging technique, second-harmonic-generation optical coherence tomography (SHOCT). This technique combines the spatial resolution and depth penetration of optical coherence tomography (OCT) with the molecular sensitivity of second-harmonic-generation spectroscopy. As a consequence of the coherent detection required for OCT, polarization-resolved images arise naturally. We demonstrate this new technique on a skin sample from the belly of Icelandic salmon, acquiring polarization-resolved SHOCT and OCT images simultaneously.  相似文献   

5.
We describe a new method to measure the decorrelation rate of the optical coherence tomography (OCT) magnitude simultaneously in space and time. We measure the decorrelation rate of the OCT magnitude in a Fourier-domain OCT system for a large range of translational diffusion coefficients by varying the sphere diameter. The described method uses the sensitivity advantage of Fourier-domain OCT over time-domain OCT to increase the particle diffusion imaging speed by a factor of 200. By coherent gating, we reduce the contribution of multiple scattering to the detected signal, allowing a quantitative study of diffusive particle dynamics in high concentration samples. We demonstrate that this technique is well suited to image diffusive particle dynamics in samples with a complex geometry as we measure the morphology and diffusive particle dynamics simultaneously with both high spatial and high temporal resolution.  相似文献   

6.
周琳  丁志华  俞晓峰 《光学学报》2005,25(9):181-1185
光学相十层析成像(光学相干层析成像术)的轴向分辨力由光源带宽和探测光束的聚焦条件共同决定。提高光学相干层析成像术轴向分辨力的方法主要基于带宽光源技术。提出了一种将变迹术与光学相十层析成像术相干门有机结合的方法来提高其轴向分辨力。通过适当形式的光瞳滤波器.使光学相干层析成像术系统轴向响应的主瓣宽度缩小到相干门之内,而其旁瓣则处于相干门之外.不对相干成像产生有效贡献。这样.就能在光源带宽不变的条件下,有效提高光学相十层析成像术的轴向分辨力,避免了采用宽带光源所带来的费用昂贵和系统复杂等缺陷。  相似文献   

7.
Cobb MJ  Liu X  Li X 《Optics letters》2005,30(13):1680-1682
We report an approach to achieving continuous focus tracking and a depth-independent transverse resolution for real-time optical coherence tomography (OCT) imaging. Continuous real-time focus tracking is permitted by use of a lateral-priority image acquisition sequence in which the depth-scanning rate is equivalent to the imaging frame rate. Real-time OCT imaging with continuous focus tracking is performed at 1 frame/s by reciprocal translation of a rapid lateral-scanning miniature imaging probe (e.g., an endoscope). The optical path length in the reference arm is scanned synchronously to ensure that the coherence gate coincides with the imaging beam focus. The image quality improvement is experimentally demonstrated by imaging a tissue phantom embedded with polystyrene microspheres and rabbit esophageal tissues.  相似文献   

8.
Xie T  Mukai D  Guo S  Brenner M  Chen Z 《Optics letters》2005,30(14):1803-1805
A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.  相似文献   

9.
A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with <4-microm axial resolution by use of a femtosecond Cr:forsterite laser light source. The micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.  相似文献   

10.
EW Chang  JB Kobler  SH Yun 《Optics letters》2012,37(17):3678-3680
The ability to quantify and visualize submicrometer-scale oscillatory motions of objects in three dimensions has a wide range of application in acoustics, materials sciences, and medical imaging. Here we demonstrate that volumetric snapshots of rapid periodic motion can be captured using optical coherence tomography (OCT) with subnanometer-scale motion sensitivity and microsecond-scale temporal resolution. This technique, termed OCT vibrography, was applied to generate time-resolved volumetric vibrographs of a miniature drum driven acoustically at several kilohertz.  相似文献   

11.
Adaptive optics optical coherence tomography for retina imaging   总被引:1,自引:0,他引:1  
When optical coherence tomography (OCT) is used for human retina imaging, its transverse resolution is limited by the aberrations of human eyes. To overcome this disadvantage, a high resolution imaging system for living human retina, which consists of a time domain OCT system and a 37-elements adaptive optics (AO) system, has been developed. The AO closed loop rate is 20 frames per second, and the OCT has a 6.7-μm axial resolution. In this paper, this system is introduced and the high resolution imaging results for retina are presented.  相似文献   

12.
The axial resolution of optical coherence tomography (OCT) is determined by the coherence length of the light source. We demonstrate for the first time high-resolution OCT of biological tissue using a halogen lamp as the light source for a low coherence interferometer. High-resolution OCT imaging with 3.5 μm resolution was performed successfully for onion and porcine skin, although the coherence light power for illumination of a sample is as small as 100 nW.  相似文献   

13.
We demonstrate a compact, inexpensive, and reliable fiber-coupled light source with broad bandwidth and sufficient power at 1300 nm for high resolution optical coherence tomography (OCT) imaging in real-time applications. By combining four superluminescent diodes (SLEDs) with different central wavelengths, the light source has a bandwidth of 145 nm centered at 1325 nm with over 10 mW of power. OCT images of an excised stage 30 embryonic chick heart acquired with our combined SLED light source (<5 μm axial resolution in tissue) are compared with images obtained with a single SLED source (∼10 μm axial resolution in tissue). The high resolution OCT system with the combined SLED light source provides better image quality (smaller speckle noise) and a greater ability to observe fine structures in the embryonic heart.  相似文献   

14.
光学相干断层扫描成像新技术OCT   总被引:9,自引:0,他引:9  
光学相干层析成像技术(optical coherence tomography,简称OCT)是一种新型成像方法,在生物医学和材料等许多领域有广泛的应用。本文介绍了OCT的基本原理,并给出了用该装置对生物组织样品的成像结果。此外还用计算机图像处理的方法,使得图像分辨率得到了进一步提高。  相似文献   

15.
以平衡检测原理为基础,利用中心波长为700 nm的宽带低相干白光光源,在自由空间中搭建了分辨率为0.93 m的基于平稳小波变换(SWT)的时域光学相干层析(TDOCT)系统,并将其应用于塑料薄片与透明胶纸多层薄膜结构的无损评价。针对现有算法重构效果不够理想的问题,通过对OCT成像过程中的图像增强手段的对比,提出利用SWT分解算法处理多层薄膜结构的光学相干层析二维图像。由薄膜检测的实验结果可知,从SWT细节系数中可以提取更显著的多层薄膜界面干涉信号,从而提高多层薄膜界面的增强效果。  相似文献   

16.
Tang S  Zhou Y  Chan KK  Lai T 《Optics letters》2011,36(24):4800-4802
A multiscale multiphoton microscopy (MPM) and optical coherence tomography (OCT) system has been developed using a sub-10 fs Ti:sapphire laser. The system performs cross-sectional OCT imaging over millimeter field-of-view and en-face high-resolution MPM imaging with submicrometer resolution from the same sample location. With fish cornea, we have demonstrated cross-sectional imaging of cornea tissue layers using OCT, and the zoom-in imaging of cells and collagen fibers in each layer using MPM. The multiscale MPM/OCT system shows the potential of a rapid coarse scan to search for abnormal regions and the subsequent fine zoom-in imaging for diagnosis.  相似文献   

17.
A high-speed (47,000 A-scans/s), ultrahigh axial resolution Fourier domain optical coherence tomography (OCT) system for retinal imaging at approximately 1060 nm, based on a 1024 pixel linear array, 47 kHz readout rate InGaAs camera is presented. When interfaced with a custom superluminescent diode (lambda(c) = 1020 nm, Deltalambda = 108 nm, Pout = 9 mW), the system provides 3.3 microm axial OCT resolution at the surface of biological tissue, approximately 4.5 microm in vivo in rat retina, approximately 5.7 microm in vivo in human retina, and 110 dB sensitivity for 870 microW incident power and 21 mus integration time. Retinal tomograms acquired in vivo from a human volunteer and a rat animal model show clear visualization of all intraretinal layer and increased penetration into the choroid.  相似文献   

18.
In vivo ultrahigh-resolution optical coherence tomography   总被引:14,自引:0,他引:14  
Ultrahigh-resolution optical coherence tomography (OCT) by use of state of the art broad-bandwidth femtosecond laser technology is demonstrated and applied to in vivo subcellular imaging. Imaging is performed with a Kerr-lens mode-locked Ti:sapphire laser with double-chirped mirrors that emits sub-two-cycle pulses with bandwidths of up to 350 nm, centered at 800 nm. Longitudinal resolutions of ~1mum and transverse resolution of 3mum, with a 110-dB dynamic range, are achieved in biological tissue. To overcome depth-of-field limitations we perform zone focusing and image fusion to construct a tomogram with high transverse resolution throughout the image depth. To our knowledge this is the highest longitudinal resolution demonstrated to date for in vivo OCT imaging.  相似文献   

19.
An ultra-high resolution spectral domain optical coherence tomography (SD-OCT) was developed using a cost-effective supercontinuum laser. A spectral filter consists of a dispersive prism, a cylindrical lens and a right-angle prism was built to transmit the wavelengths in range 680–940 nm to the OCT system. The SD-OCT has achieved 1.9 μm axial resolution and the sensitivity was estimated to be 91.5 dB. A zero-crossing fringes matching method which maps the wavelengths to the pixel indices of the spectrometer was proposed for the OCT spectral calibration. A double sided foam tape as a static sample and the tip of a middle finger as a biological sample were measured by the OCT. The adhesive and the internal structure of the foam of the tape were successfully visualized in three dimensions. Sweat ducts was clearly observed in the OCT images at very high resolution. To the best of our knowledge, this is the first demonstration of ultra-high resolution visualization of sweat duct by OCT.  相似文献   

20.
We describe a novel optical system for bidirectional color Doppler imaging of flow in biological tissues with micrometer-scale resolution and demonstrate its use for in vivo imaging of blood flow in an animal model. Our technique, color Doppler optical coherence tomography (CDOCT), performs spatially localized optical Doppler velocimetry by use of scanning low-coherence interferometry. CDOCT is an extension of optical coherence tomography (OCT), employing coherent signal-acquisition electronics and joint time-frequency analysis algorithms to perform flow imaging simultaneous with conventional OCT imaging. Cross-sectional maps of blood flow velocity with <50-microm spatial resolution and <0.6-mm/s velocity precision were obtained through intact skin in living hamster subdermal tissue. This technology has several potential medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号