首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
左东华  李灿等 《催化学报》2002,23(3):271-275
分别以γ-Al2O3、无定形硅铝和含少量稀土分子筛的γ-Al2O3为载体,制备了不同系列的NiW体系加氢脱硫催化剂,并在连续流动微反装置上评价了催化剂对4,6-二甲基二苯并噻吩(DMDBT)加氢脱硫反应的催化性能。结果表明,NiW体系催化剂对该反应具有较高的芳烃加氢和脱硫活性;先加氢后脱硫是加氢脱硫(HDS)反应的主要途径,提高加氢活性是提高HDS活性最有效的途径;增强载体的酸性,直接脱硫和裂解活性均有所提高。同时,酸性载体负载的催化剂还显示出一定的异构化性能,但其加氢活性低于氧化铝负载的催化剂。酸性载体负载的NiW催化剂的异构化性能在邻二甲苯异构化反应中得到进一步证实。根据实验结果,讨论了NiW体系催化剂上DMDBT转化反应的不同途径。  相似文献   

2.
王倩  聂红  龙湘云 《催化学报》2005,26(5):399-402
 考察了H2S对NiW/Al2O3和CoMo/Al2O3上二苯并噻吩(DBT)和4,6-二甲基二苯并噻吩(DMDBT)加氢脱硫反应的影响. 结果表明,H2S同时抑制DBT和DMDBT两种硫化物的加氢脱硫反应,并且对DBT的抑制作用更为明显. 对于NiW/Al2O3和CoMo/Al2O3两种催化剂,H2S抑制了DBT和DMDBT的直接脱硫路径活性; 对于CoMo/Al2O3催化剂上DBT转化中的加氢反应也有抑制作用,但促进了DMDBT转化中加氢反应的进行. NiW/Al2O3催化剂更易受H2S的影响.  相似文献   

3.
采用连续流动微反装置考察了活性组分Ni/((Ni+W)原子比及预硫化条件对NiW/γ-Al2O3催化剂噻吩加脱硫(HDS)反应活性的影响,用X射线光电子能谱和电镜微区元素分析方法对硫化态催化剂进行了表征,结果表明,催化剂的组成、硫化方法、硫化度和反应条件等都影响NiW/γ-Al2O3催化剂的HDS反应活性,对于在较低温度(300℃)下硫化的催化剂,当反应温度较低(260-290℃)时,最佳Ni(Ni+W)原子比为0.50,而当反应温度较高(330-360℃),最佳Ni(Ni+W)原子比为0.23,当催化剂在300-500℃下硫化时,其噻吩HDS反应活性随硫化温度升高而增大,表明硫化度较高的催化剂具有较高的HDS反应活性。  相似文献   

4.
 采用连续流动微反装置考察了活性组分Ni/(Ni+W)原子比及\r\n预硫化条件对NiW/γ-Al2O3催化剂噻吩加氢脱硫(HDS)反应活性的\r\n影响.用X射线光电子能谱和电镜微区元素分析方法对硫化态催化剂进\r\n行了表征.结果表明,催化剂的组成、硫化方法、硫化度和反应条件等\r\n都能影响NiW/γ-Al2O3催化剂的HDS反应活性.对于在较低温度(30\r\n0℃)下硫化的催化剂,当反应温度较低(260~290℃)时,最佳Ni/\r\n(Ni+W)原子比为0.50,而当反应温度较高(330~360℃)时,最佳\r\nNi/(Ni+W)原子比为0.23.当催化剂在300~450℃下硫化时,其噻\r\n吩HDS反应活性随硫化温度升高而增大,表明硫化度较高的催化剂具有\r\n较高的HDS反应活性.  相似文献   

5.
 为了更好地认识加氢脱硫和催化加氢反应中的载体影响和助剂效应,在同样的催化剂制备方法及反应条件下,研究了噻吩加氢脱硫(HDS)和四氢萘催化加氢(HYD)反应.结果表明,对于无助剂的Mo和W催化剂,载体对催化活性的影响顺序为TiO2-Al2O3>ZrO2>Al2O3.助剂的添加改变了催化剂活性顺序.Ni助剂催化剂的活性明显高于Co助剂催化剂.ZrO2担载的添加Ni的Mo和W催化剂分别获得了最佳的HDS和HYD活性.然而,添加Pt的Mo和W催化剂其HDS和HYD活性仅是Pt与Mo(W)二者的加和,Pt与Mo(W)之间没有协同效应.先将担载的Mo和W预硫化再将助剂引入体系的催化剂制备方法可以避免Ni和Co过早硫化形成类硫化镍(或硫化钴)物相,与采用螯合物分子方法制备的催化剂间有一定的相似性.  相似文献   

6.
采用水热法合成了不同SiO2/Al2O3比的MCM-41介孔分子筛.并分别以HY/MCM-41/γ-A1203,HY/γ-A12O3和γ-Al2O3为载体,用浸渍法制备了Mo-Ni-P催化剂.以萘为模型化合物,考察了硫化态Mo-Ni-P催化剂的加氢活性.结果表明,不同载体负载的催化剂催化活性均随着活性组分负载量的增大而提高,其中掺杂大比表面MCM-41的HY/MCM-41/γ-Al2O3所负载的催化剂催化活性提高幅度最大.由于MCM-41与HY分子筛在酸性和孔结构上存在互补性,因而催化剂对萘加氢存在协同作用.提出了萘加氢的反应机理,认为反应网络包括两个平行路径:-是萘加氢生成四氢萘后发生异构化或开环反应;二是萘加氢生成四氢萘后进-步加氢生成十氢萘,继而发生异构化或开环反应.  相似文献   

7.
WP/γ-Al2O3催化剂负载方式对噻吩加氢脱硫性能的影响   总被引:7,自引:4,他引:7  
以γ-Al2O3为载体,分别采用机械混合法、共浸渍法、分步浸渍法和程序升温、高纯氢气还原无定型磷钨酸盐的方法,制备了活性组分为磷化钨,负载量为20%的WP/γ-Al2O3催化剂。考察了不同方法制备的催化剂对噻吩加氢脱硫(HDS)反应的催化活性。结果表明:不同负载方式对催化剂结构有一定影响,对噻吩加氢脱硫性能的影响在低温时较明显。采用机械混合方式,先混合后还原方法制备的催化剂其HDS活性比先还原后混合方法制备的催化剂高;采用共浸渍和分步浸渍方式,通过焙烧所形成的催化剂其HDS活性分别比不经焙烧所形成的催化剂高或接近;浸渍焙烧所形成的催化剂其HDS活性远远高于机械混合法制备的催化剂。  相似文献   

8.
本工作将三种材料:全硅MCM-41 (Si-MCM-41)、通过机械混合Si-MCM-41和HZSM-5得到的Z-MCM-41-M、通过在HZSM-5外部包覆Si-MCM-41制备得到的Z-MCM-41,采用XRD、N2吸附-脱附、NH3-TPD、Py-IR手段进行了表征.分别以这些材料为载体,制备出负载型贵金属Pd催化剂,以二苯并噻吩(DBT)为模型化合物,在固定床反应器上进行加氢脱硫(HDS)性能考察.反应结果表明,载体的表面积或分散程度并不是影响负载型Pd催化剂HDS性能的关键性因素,催化剂的HDS性能受到载体的孔尺寸和载体的酸性双重影响.负载在酸性载体上表现出较好的HDS性能和加氢选择性,与溢流氢有关.其中,在三种催化剂中,Pd/Z-MCM-41催化剂表现出最高的HDS活性和优异的加氢活性,说明在载体的介孔孔道结构中引入微孔的酸中心对提高加氢脱硫活性有重要影响,仅靠机械混合方式制备的载体不能将介孔的孔道优势与微孔的酸性优势表现出来,不能产生较好的协同催化作用,具有介孔孔道结构和适中酸性的Z-MCM-41复合材料是潜在的贵金属加氢脱硫催化剂载体.  相似文献   

9.
NiW/γ-Al2O3加氢催化剂化学吸附性质的研究   总被引:2,自引:0,他引:2  
采用脉冲色谱法测定了噻吩在硫化态NiW/γ-Al2O3催化剂上化学吸附过程中热力学函数的变化,并与噻吩加氢脱硫(HDS)反应活性进行了关联.结果表明,噻吩在硫化态NiW/γ-Al2O3催化剂上的吸附不能太强,催化剂中的Ni可以降低噻吩在催化剂表面上的吸附强度,增加HDS反应活性中心的数目.从H2在硫化态NiW/γ-Al2O3催化剂上吸附后的程序升温脱附实验结果发现,H2在硫化态催化剂上有两种吸附态,高温脱附所对应的吸附态与HDS反应有关.  相似文献   

10.
孙厚祥  张化冰 《分子催化》2020,34(5):446-453
直接在AlPO4-5凝胶中加入Si和Sn2+源成功制备SAPO-5和SnSAPO-5分子筛。采用XRD、低温N2物理吸附、SEM、NMR、Py-IR、NH3-TPD等表征对分子筛物理化学性质进行分析。随Sn含量的增多,杂原子SnSAPO-5分子筛表面更光滑,外貌呈现更规则的六棱柱;Sn和Si更多的富集于表面;并且Sn2+同晶取代Al3+,骨架产生缺陷,电荷不平衡,进而产生更多的酸性位点。将分子筛用于NiW催化剂的改性,以脱除模拟油中二苯并噻吩(DBT)为探针,评价其改性加氢催化剂的加氢脱硫(HDS)反应性能。SnSAPO-5分子筛的添加在催化剂上引入了更多的酸性中心;改善载体与活性金属的相互作用;促进活性金属的硫化;形成更多的金属活性相,进而提高NiW催化剂的加氢脱硫能力。因而SnSAPO-5改性催化剂表现出比其他改性催化剂更好的HDS活性,具有良好的应用前景。  相似文献   

11.
HY/MCM-41/γ-Al2O3负载的硫化态Ni-Mo-P催化剂上萘的加氢   总被引:1,自引:0,他引:1  
 采用水热法合成了不同SiO2/Al2O3比的MCM-41介孔分子筛. 并分别以HY/MCM-41/γ-Al2O3, HY/γ-Al2O3和γ-Al2O3为载体,用浸渍法制备了Mo-Ni-P催化剂. 以萘为模型化合物,考察了硫化态Mo-Ni-P催化剂的加氢活性. 结果表明,不同载体负载的催化剂催化活性均随着活性组分负载量的增大而提高,其中掺杂大比表面MCM-41的HY/MCM-41/γ-Al2O3所负载的催化剂催化活性提高幅度最大. 由于MCM-41与HY分子筛在酸性和孔结构上存在互补性,因而催化剂对萘加氢存在协同作用. 提出了萘加氢的反应机理,认为反应网络包括两个平行路径: 一是萘加氢生成四氢萘后发生异构化或开环反应; 二是萘加氢生成四氢萘后进一步加氢生成十氢萘,继而发生异构化或开环反应.  相似文献   

12.
研究了γ-Al2O3负载的Co/γ-Al2O3催化剂上肉桂醛的选择加氢反应.反应结果表明,以CoCl2作为前驱物的Co/γ-Al2O3催化剂的选择性要高于以Co(NO3)2作为前驱物的Co/γ-Al2O3催化剂,而活性则正好相反.当钴的负载量小于9%时,随着钴负载量的增加,催化剂的活性和选择性随之增加,当钴的负载量大于9%时,随着钴负载量的增加,Co/γ-Al2O3催化剂的活性略有增加,而生成肉桂醇的选择性变化也很小,认为9%的钴负载量是催化剂反应活性和选择性的一个阈值.在所选定的范围内,反应温度和压力对肉桂醛加氢的选择性几乎没有影响.  相似文献   

13.
 采用专利方法制备出一种新型的γ-Al2O3,并以其为载体,制备出加氢处理催化剂MoNiP/Al2O3.用PAS-CA,XPS,DRS,TPR和微型反应色谱等技术对γ-Al2O3和催化剂进行了表征,考察了Ni和P两种助剂的作用.结果表明,γ-Al2O3具有较大的孔径,集中的孔分布和较高的机械强度;活性金属Mo在γ-Al2O3表面上的化学分散量(分散阈值)可达5.04~5.82μmol/m2.因而特别适合用作高活性加氢处理催化剂的载体.引入的Ni主要是同Mo/Al2O3催化剂表面上较稳定的金属-载体相互作用复合物反应,并生成类NiMoO4化合物;在MoNi/Al2O3催化剂中引入P,有利于抑制四面体配位结构的物种Mo[T],增加八面体配位结构的物种Mo[O],改善催化剂的还原性能,从而提高催化剂的加氢处理活性.助剂Ni和P的最佳含量分别为w(Ni)=4.0%和w(P)=2.6%.  相似文献   

14.
助剂镍/钴对磷化钨催化剂加氢精制性能的影响   总被引:3,自引:0,他引:3  
在共浸渍法制备磷化钨/γ-Al2O3催化剂基础上,分别加人1%、3%、5%、7%和9%(占活性组分比例)的助剂镍或钴,制得负载30%含助剂镍/钴磷化钨/γ-Al2O3系列催化剂,考察了助剂及其加人比例对催化剂加氢脱硫和加氢脱氮性能的影响.结果表明,加人适当比例的助剂镍或钴,有利于提高磷化钨/γ-Al2O3催化剂的加氢脱硫活性,当助剂含量分别为5%镍或7%钴时,催化剂的噻吩加氢脱硫率最高;助剂镍对磷化钨/γ-Al2O3催化剂的加氢脱氮反应不利,而加人适当比例助剂钴有利于提高催化剂加氢脱氮活性,当助剂钴含量为5%时,催化剂吡啶加氢脱氮率最高.温度对磷化钨/γ-Al2O3催化剂加氢精制性能有一定影响,高温有利于加氢脱硫反应,低温有利于加氢脱氮反应.  相似文献   

15.
石油馏份油加氢精制的核心是馏份油的加氢脱硫(HDS)和加氢脱氮(HDN)。目前用于基础研究与工业过程的加氢精制催化剂主要是负载型过渡金属硫化物[Co(Ni)Mo(W)/γ-AI2O3]^[1,2]。近年来的研究结果表明,在活性相中引入其它适宜种类的助剂组元有助于催化剂活性及产物选择性的改善^[3,4]。本文以Keggin型钼磷酸为硫化物前体活性相钼磷源、硝酸镍为镍源制成不同钼含量的负载型硫化态三组元催化剂(NiMoP/γ-AI2O3),并在TPR及连续流动固定床反应装置上考察了催化剂的氢还原性能及模型底物噻吩HDS反应活性。  相似文献   

16.
超声波-微波法制备NiW/Al2O3加氢脱硫催化剂   总被引:12,自引:0,他引:12  
 采用一次浸渍技术制备了NiW/Al2O3加氢脱硫(HDS)催化剂,在制备过程中采用超声波处理浸渍液,采用微波进行样品干燥. 以噻吩为模型化合物,在微反装置上评价了该催化剂的加氢脱硫活性. 使用X射线光电子能谱和透射电镜等表征手段研究了催化剂的表面状态和物化性. 结果表明,使用超声波及微波技术制备的NiW/Al2O3催化剂具有较高的加氢脱硫活性,催化剂的活性组分较易硫化,可生成更多的硫化物种参与反应. 催化剂中硫化态钨的表面原子浓度较高,从而使硫化态钨物种保持较高的表面分散度,有利于增加活性中心的数目. 该催化剂的活性中心结构具有较多配位不饱和的边缘位和棱边位,因而具有较高的加氢脱硫活性.  相似文献   

17.
介孔二氧化硅泡沫(MCFs)材料具有超大的三维球形孔结构、超大孔容(1.0–2.4 cm3/g)、高比表面(1000 m2/g)、孔径可调范围较广(24–50 nm)且球形孔道之间通过窗口(9–22 nm)联结,因此具有优良的传质性能,能够促进加氢脱硫反应.但是,与传统的微孔分子筛相比,该纯硅类介孔材料酸性较弱,不利于一些酸催化反应;因此,对纯硅材料进行金属改性以增加其酸性,从而促进催化剂的催化活性.而一般对纯硅类介孔材料采用Al,Ti,Zr等金属,铝改性主要是为纯硅载体提供酸性,而钛锆改性则是为了调变活性金属以及促进金属的分散,从而提高催化剂的加氢脱硫活性.因此,我们主要采用后改性方法,以P123为微乳液体系中的表面活性剂,TEOS为硅源,TMB为扩孔剂,异丙醇铝为铝源,成功合成了一系列Si/Al比不同的介孔二氧化硅泡沫材料.通过改变异丙醇铝的加入量,成功合成了系列Si/Al比(x)的NiMo/Al-MCFs(x)(x=10,20,30,40和50)催化剂.对所合成的载体及相应的催化剂通过SAXS,N2吸附脱附,SEM,Py-FTIR,UV-Vis,H2-TPR,NH3-TPD,HRTEM,Raman及27Al MAS NMR等表征手段进行分析,并在高压加氢微反装置上对相应的NiMo负载型催化剂进行DBT HDS活性评价,系统分析了不同硅铝比对催化剂DBT HDS反应活性的影响.SAXS和SEM表征结果表明,Al后改性并没有破坏载体材料的结构;27Al MAS NMR表征结果表明,后改性法能成功把Al掺杂进纯硅材料的骨架中.催化剂UV-Vis和Raman表征结果表明,当Si/Al比为20时,NiMo/Al-MCFs(20)催化剂Mo物种的带隙能量最大,且氧化钼的平均粒径较小,Mo物种在该催化剂中的分散度较好;H2-TPR分析结果表明,NiMo/Al-MCFs(20)催化剂还原温度较低,最易还原.Py-FTIR结果表明,随着Al加入量的增大,其酸性逐渐增大,当Si/Al比为20时酸性达到最大,继续增加Al的加入量,其酸性不再增加;此外,NiMo/Al-MCFs(20)的硫化度最高,且其MoS2的堆垛层数较低.负载活性金属后制备了NiMo/Al-MCFs(x)催化剂,将其应用于DBT加氢脱硫反应,并与传统NiMo/γ-Al2O3催化剂加氢脱硫反应活性作对比.研究发现,所制备的NiMo/Al-MCFs(x)系列催化剂由于具有较大孔径、比表面积及孔容和较强的酸性,因而其DBT HDS活性明显高于传统的工业NiMo/γ-Al2O3催化剂,且催化剂活性在硅铝比达到20时最大,最高可达96%,因此它作为加氢脱硫催化剂载体具有很大的应用前景.  相似文献   

18.
TiO2-Al2O3复合氧化物负载NiMo加氢脱硫催化剂的研究   总被引:11,自引:0,他引:11  
采用溶胶凝胶技术,从Al2O3载体的表面改性出发,制备了TiO2-Al2O3复合载体。采用此改性载体制备了NiMo/TiO2-Al2O3催化剂;用中压固定床微反装置考察了载体改性对制备的催化剂的噻吩加氢脱硫(HDS)活性的影响.用透射电镜、NH3-TPD及吡啶红外光谱法对改性载体和催化剂进行了表征.结果表明,经钛溶胶改性的载体制备的催化剂与原有载体制备的催化剂相比,催化剂活性提高了20%.改性载体表面负载的钛溶胶以纳米尺寸的TiO2微粒形态存在.  相似文献   

19.
 采用微型催化反应装置,结合氢化学吸附、吡啶吸附的红外光谱、热重分析和程序升温还原等物理化学手段,研究了添加碱金属助剂对负载型Pt-Sn/γ-Al2O3催化剂的长链烷烃(C10~C13)脱氢反应性能、表面酸性、金属表面性质以及负载组分与载体之间相互作用的影响.发现添加一定量的Li+和Na+可以减少催化剂的积炭量,提高催化剂的金属表面裸露度,从而改善催化剂的脱氢反应稳定性.而添加碱性较强的K+和Cs+虽可以提高催化剂的抗积炭性能,但破坏了Pt-Sn-Al2O3之间的相互作用,使锡组分易被还原,催化剂的活性表面减小,从而抑制了催化剂的脱氢反应活性.  相似文献   

20.
以Si O2、全硅MCM-41(Si-MCM-41)、通过机械混合Si-MCM-41与ZSM-5得到的Z-MCM-41-M以及通过在ZSM-5外部包覆MCM-41制备得到的Z-MCM-41四种材料为载体,制备了四种负载型Pd催化剂。采用XRD、HRTEM、N2吸附-脱附、NH3-TPD手段对Pd催化剂进行了表征;以二苯并噻吩(DBT)为模型化合物,在固定床反应器上对四种催化剂的加氢脱硫(HDS)活性、加氢路径选择性和加氢裂化活性进行了考察,研究了不同类型载体对Pd催化剂加氢脱硫性能的影响。结果表明,载体的性质会显著影响负载型Pd催化剂的加氢脱硫性能。载体的比表面积对负载型Pd催化剂加氢脱硫活性影响不大,但是HYD路径的选择性与载体的孔道结构有关;具有介孔孔道结构有利于加氢路径选择性的提高。酸性载体负载的Pd催化剂表现出较好加氢脱硫活性和加氢选择性,这与氢溢流有关。介孔材料的孔道结构与微孔沸石的酸性有机结合,所得到的Z-M CM-41复合材料是是潜在的贵金属Pd加氢脱硫催化剂优良载体,可有效提升其加氢脱硫活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号