共查询到19条相似文献,搜索用时 171 毫秒
1.
基于自组织特征映射神经网络的短期负荷预测 总被引:5,自引:0,他引:5
提出了一种基于自组织特征映射神经网络(Kohmonen网络)的短期负荷预测方法,根据Kohonen网络的聚类特性,样本在输入时就已分好类。输入既有与负荷曲线平滑性有关的数据又有反映负荷周期性变化的数据。在学习训练时,区别于普通的无监督竞争学习采用有监督竞争学习方式,缩短了学习时间,提高了学习精度。实例分析征明了该方法的有效性。 相似文献
2.
基于RBF神经网络和专家系统的短期负荷预测方法 总被引:41,自引:2,他引:41
深入研究了天气和特殊事件对电力负荷的影响,建立了结合径向基(RBF)神经网络和专家系统来进行短期负荷预测的模型。利用RBF神经网络的非线性逼近能力预测出日负荷曲线,然后利用专家系统根据天气因素或特殊事件对负荷曲线进行修正,使其在天气突变等情况下也能达到较高的预测精度。利用该模型编制的实用化软件在西北电网的多个电力局投入实际应用,结果表明:该方法用BP神经网络相比,具有较高的预测精度,同时具有较强的实用性。 相似文献
3.
基于事例推理短期负荷预测方法的改进 总被引:2,自引:0,他引:2
针对基于事例推理(CBR)短期负荷预测中的事例库组织,提出第一级按不同的时刻和星期类型粗分类、第二级按照模糊聚类方法细分类的二级分类方法,可以很好地实现不同预测环境之间的相似性和相异性;针对事例的检索,提出模糊优先比的定量属性检索方法,按此方法进行检索不但可以提高检索效率,还可以对检索过程进行控制.实际算例表明,以此方法进行负荷预测的周平均相对误差为2.620%,低于一般的CBR方法和单一预测方法. 相似文献
4.
短期负荷预测是电力系统安全经济运行的基础.介绍了电力系统短期负荷预测基本方法原理与特点,说明了各种方法的优缺点以及应用的局限性. 相似文献
5.
电力系统负荷预测已成为实现电力系统管理现代化的重要研究内容之一,尤其是短期负荷预测,在电力系统的生产和运行中发挥着重要作用。本文分析了影响负荷预测的主要因素,以安顺市电力负荷数据为例,得出负荷预测结果与历史负荷水平、当前运行状况、气象因素以及日期类型等密切相关。 相似文献
6.
7.
基于神经网络的短期电力负荷预测 总被引:2,自引:0,他引:2
采用神经网络方案来进行短期电力负荷预测,探讨了负荷模型分类模,对应用于实际的神经网络算法进行了具体处理,如数据的归一化问题,网络权值与阈值的初始值选定,训练样本的选择策略等。 相似文献
8.
电力系统短期负荷组合预测 总被引:2,自引:0,他引:2
基于三种单一预测模型,给出了电力系统短期负荷组合预测模型。为求解固定权系数,引入智能优化算法求解。通过计算结果比较表明,组合预测法具有较强的实用性和优越性。 相似文献
9.
基于自适应模糊神经元网络的电力短期负荷预测 总被引:3,自引:0,他引:3
利用模糊神经元网络(FNN)进行电力短期负荷预测.给出了模糊神经元网络结构和部分输入变量的模糊化.FNN采用LMS(Least-Mean-Square)算法,并用历史负荷数据进行训练.一经训练,网络就能应用于在线负荷预测.在预测过程中,权值按最近的负荷行为自适应调整.测试结果表明,该方法具有较好的精度和较快的速度. 相似文献
10.
城市供水负荷短期预测方法 总被引:7,自引:0,他引:7
结合城市用水量的影响因素及特点,分析了城市用水量的变化规律,探讨了水量预测时间序列分析方法;根据城市供水运行调度对用水量预测的实际要求,采用时间序列三角函数分析法建立了管网用水量的短期负荷预测模型。实例考核证明,该模型有效可行。 相似文献
11.
为提高负荷预测结果的精度,设计了 一种基于VMD-IWOA-LSSVM(Variational Mode Decomposition-Improved Whale Optimization Algorithm-Least Square Support Vector Machine)短期负荷预测模型.先通过变分模态算法将... 相似文献
12.
钢铁企业短期负荷预测的研究 总被引:6,自引:0,他引:6
对大工业企业进行负荷预测是确定机组组合方案、企业与区域电网功率输送方案和负荷调度方案所不可缺少的.针对钢铁企业冲击负荷较多这个特点,使用灰色预测法、时间序列法、趋势外推法和回归预测法对某钢铁企业进行了48点负荷预测,结果表示除了必要的数据预处理以外,使用灰色理论和指数平滑法可以得到比较满意的结果. 相似文献
13.
基于神经元网络的短期电力负荷预测 总被引:7,自引:0,他引:7
基于多层感知器可任意精度逼近线性或非线性函数的基本原理,提出一种考虑气候影响因素的多层前馈神经网络的短期负荷预测方法,并给出相应的反向传播算法(BP)的构造过程和训练方法,研究结果表明,基于神经元网络的短期电力负荷预测方法具有精度高的特点,负荷预测结果的相对误差小于3.67%。 相似文献
14.
15.
在运用神经网络进行短期电力负荷预测中,天气是影响负荷的重要因素。为了更好地捕捉天气对负荷的影响,文中提出了一种基于神经网络的趋势组合短期负荷预测思想和模型,将短期负荷与天气变量的内在关系分解为3个不同的趋势分量,即周趋势分量、日趋势分量和小时趋势分量,每一个趋势分量分别用一个神经网络模型捕获,趋势分量的预测结果再用一个神经网络模型进行组合,从而得到最终的预测值,分别用改进的和传统的模型预测一周的小时负荷,结果表明,这种神经网络模型能取得更好的预测精度。 相似文献
16.
准确的短期电力负荷预测有助于工业生产中故障诊断和发电成本的降低.针对已有遗传算法优化的BP神经网络(GA-BP)存在局部搜索能力差的缺点,提出多岛遗传算法优化的BP神经网络(MIGA-BP),通过使种群在不同"岛屿"进化和迁移提高物种多样性,克服GA-BP算法中的缺点.将天气因素影响权重和归一化后的负荷数据输入建立的MIGA-BP神经网络预测模型,在MATLAB环境下进行仿真研究.结果表明,控制变量条件相同时,MIGA-BP模型预测误差比GA-BP模型的更小,对短期电力负荷预测更有优势. 相似文献
17.
为进一步提高短期电力负荷预测精度,构建一种基于注意力机制的经验模态分解(EMD)和门控循环单元(GRU)混合模型,对时间序列的短期负荷进行预测.首先,对负荷序列进行EMD,将数据重构成多个分量;再通过GRU提取各分量中时序数据的潜藏特征;经注意力机制突出关键特征后,分别对各分量进行预测;最后,将各分量的预测结果叠加,得到最终预测值.仿真结果表明:相对于BP网络模型、支持向量机(SVR)模型、GRU网络模型和EMD-GRU模型,基于EMD-GRU-Attention的混合预测模型能取得更高的预测精度,有效地提高短期电力负荷预测精度. 相似文献
18.
针对目前常用方法在解决负荷预测问题时,结果往往难以达到工程要求精度的现状,利用过程神经网络输入为时间函数以及预测精度高的特点,建立了基于过程神经网络的电力系统短期负荷预测模型;给出了模型的结构,基于函数正交基展开的离散数据拟合方法以及模型的学习算法.针对东北某地区电网的日负荷数据,进行了模型训练和负荷预测正确性的研究.结果表明,所建立的预测模型对负荷的预测准确率高,优于BP神经网络负荷预测模型的预测结果. 相似文献
19.
电力系统在国家工业基础设施中起着举足轻重的作用,维持系统负荷高精度预测是保障电力系统高效供应的关键。针对负荷数据的非平稳性、随机性与非线性,负荷预测误差较大的问题,结合变分模态分解(variational mode decomposition, VMD)、经验小波变换(empirical wavelet transform, EWT)、改进的空洞卷积金字塔模块(improved atros spatial pyramid pooling, IASSP)、集成双向长短时记忆模块(ensemble BiLSTM,EBiLSTM),提出了一种短期电力负荷预测模型。为解决负荷数据的非平稳性引起的模型预测波动问题,通过变分模态分解方法与经验小波变换的结合分解为若干子序列,显著降低了原始负荷序列的复杂性;为提高模型预测精度,将分解的负荷子序列利用过零率指标划分高低频序列,在低频序列中构建一种时序依赖捕获模块EBiLSTM提取长期负荷特征,高频序列中构建特征提取模块IASSP提取局部负荷特征,最后累加各子序列的预测结果,实现电力系统负荷的短期预测。选取行业通用客观评价指标:平均绝对误差、均方根误差,... 相似文献