首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Polyhedron》1987,6(11):2009-2018
A new bidentate ligand {2-(diphenylphosphino)ethyl}benzylamine(DPEBA) was synthesized and characterized based on the IR, mass and 1H, 13C and 31P NMR spectra. Various complexes of platinum group metal ions and Ni(II) and Co(II) ions with the ligand were synthesized. Reaction of RuCl2(PPh3)3 or RuCl2(Me2SO)4 with the ligand DPEBA, resulted in formation of a penta-coordinate, Ru(II) species of the composition [RuCl(DPEBA)2]Cl. Carbonylation of [RuCl(DPEBA)2]Cl gave an octahedral carbonyl complex of the type [RuCl(CO)(DPEBA)2]Cl. The reaction of RuCl3·3H2O or RuCl3(AsPh3)2MeOH with a twofold excess of the ligand gave an octahedral Ru(III) cationic species [Ru(DPEBA)2Cl2]Cl. Carbonylation of the Ru(III) complex gave rise to a carbonyl complex [RuCl(CO)(DPEBA)2]Cl2. The ligand DPEBA reacts with cobalt(II) chloride in methanol to give the 1 : 1 complex [Co(DPEBA)Cl2]. A series of Rh(I) complexes [Rh(DPEBA)2Cl], [ RhCl(CO)(DPEBA)] and [Rh(DPEBA)2]Cl were synthesized by the reaction of DPEBA with RhCl(PPh3)3, RhCl(CO)(PPh3)2 and [Rh(COD)Cl]2, respectively. Reaction of [Ir(COD)Cl]2 and IrCl(CO)(PPh3)2 with the ligand DPEBA, gave the square-planar complexes [Ir(DPBA)2]Cl and [Ir(DPEBA)(CO)Cl], respectively. Octahedral cationic complexes of the type [M(DPEBA)2Cl2]Cl (M = Rh(III), Ir(III)) were synthesized by the reaction of the ligand DPEBA and rhodium and iridium trichlorides. Reaction of NiCl2·6H2O with DPEBA in 1 : 2 molar equivalents, in boiling butanol gave an octahedral neutral complex [Ni(DPEBA)2Cl2] which readily rearranges to the square-planar complex [Ni(DPEBA)2]Cl2 in methanol. Reaction of Pd(II) and Pt(II) chlorides with DPEBA gave square-planar, cationic complexes of the type [M(DPEBA)2Cl]Cl (M = Pd, Pt). All the complexes were characterized on the basis of their analytical and spectral data.  相似文献   

2.
Reaction of (η5-C5Me5)Re(NO)(PPh3)(CH3) and HBF4 · OEt2 in CH2Cl2 at −78°C gives the dichloromethane complex [η5-C5Me5Re(NO)(PPh3)(ClCH2Cl)]+ BF4, which undergoes the title transformation at −35°C. The ReClCH2Cl carbon is attacked by halide nucleophiles (X) to give XCH2Cl and the chloride complex (η5-C5Me5)Re(NO)(PPh3)(Cl), and exhibits a 13C NMR resonance that is coupled to phosphorus (d, 3J(CP) 5.0 Hz) and geminal hydrogens (t, 1J(CH) 186 Hz).  相似文献   

3.
Substituted phosphines of the type Ph2PCH(R)PPh2 and their PtII complexes [PtX2{Ph2PCH(R)PPh2}] (R = Me, Ph or SiMe3; X = halide) were prepared. Treatment of [PtCl2(NCBut)2] with Ph2PCH(SiMe3)-PPh2 gave [PtCl2(Ph2PCH2PPh2)], while treatment with Ph2PCH(Ph)PPh2 gave [Pt{Ph2PCH(Ph)PPh2}2]Cl2. Reaction of p-MeC6H4C≡CLi or PhC≡CLi with [PtX2{Ph2PCH(Me)PPh2}] gave [Pt(C≡CC6H4Me-p)2-{Ph2PCH(Me)PPh2}] (X = I) and [Pt{Ph2PC(Me)PPh2}2](X = Cl),while reaction of p-MeC6H4C≡CLi with [Pt{Ph2PCH(Ph)PPh2}2]Cl2 gave [Pt{Ph2PC(Ph)PPh2}2]. The platinum complexes [PtMe2(dpmMe)] or [Pt(CH2)4(dpmMe)] fail to undergo ring-opening on treatment with one equivalent of dpmMe [dpmMe = Ph2PCH(Me)PPh2]. Treatment of [Ir(CO)Cl(PPh3)2] with two equivalents of dpmMe gave [Ir(CO)(dpmMe)2]Cl. The PF6 salt was also prepared. Treatment of [Ir(CO)(dpmMe)2]Cl with [Cu(C≡CPh)2], [AgCl(PPh3)] or [AuCl(PPh3)] failed to give heterobimetallic complexes. Attempts to prepare the dinuclear rhodium complex [Rh2(CO)3(μ-Cl)(dpmMe)2]BPh4 using a procedure similar to that employed for an analogous dpm (dpm = Ph2PCH2PPh2) complex were unsuccessful. Instead, the mononuclear complex [Rh(CO)(dpmMe)2]BPh4 was obtained. The corresponding chloride and PF6 salts were also prepared. Attempts to prepare [Rh(CO)(dpmMe)2]Cl in CHCl3 gave [RhHCl(dpmMe)2]Cl. Recrystallization of [Rh(CO)(dpmMe)2]BPh4 from CHCl3/EtOH gave [RhO2(dpmMe)2]BPh4. Treatment of [Rh(CO)2Cl2]2 with one equivalent of dpmMe per Rh atom gave two compounds, [Rh(CO)(dpmMe)2]Cl and a dinuclear complex that undergoes exchange at room temperature between two formulae: [Rh2(CO)2(μ-Cl)(μ-CO)(dpmMe)2]Cl and [Rh2(CO)2-(μ-Cl)(dpmMe)2]Cl. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.

5,12-dioxa-7,14-dimethyl-1,4,8,11-tetraazacyclotetradeca-1,8-diene (N4L) reacts with the starting oxorhenium(V) complex, H2[ReOCl5], to yield either mononuclear [ReO(N4L)(OH2)]Cl3, or dinuclear [Re2O3(N4L)2]Cl4·2H2O depending on the concentration of hydrochloric acid in rhenium complex. The reaction of (N4L) mixed with KSCN or PPh3 with the oxorhenium(V) complex in 6N HCl, yielded the mononuclear complexes [ReO(N4L)(SCN)]Cl2·H2O and [ReO(N4L)(PPh3)]Cl3·H2O respectively. Both complexes have an octahedral configuration. These complexes decompose through several isolable, as well as non-isolable, intermediates during heating. [Re2O3(N4L\)2] (N4L\ = dianionic tetradentate ions), [ReO(N4L)Cl]Cl2 and [ReO(N4L\)(SCN)], were synthesized pyrolytically in the solid state from the corresponding rhenium(V) complexes. All have octahedral configurations. The ligand (N4L) behaves in these complexes either as a neutral tetradentate or dianionic tetradentate ligand towards the oxorhenium ions. All complexes and the corresponding thermal products were isolated and their structures were elucidated by elemental analyses, conductance, IR and electronic absorption spectra, magnetic moments, 1H NMR and TG-DSC measurements as well as by mass spectroscopy.  相似文献   

5.
Reaction of 1-(2′-pyridylazo)-2-naphthol (Hpan) with [Ru(dmso)4Cl2] (dmso = dimethylsulfoxide), [Ru(trpy)Cl3] (trpy = 2,2′,2″-terpyridine), [Ru(bpy)Cl3] (bpy = 2,2′-bipyridine) and [Ru(PPh3)3Cl2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)2], [Ru(trpy)(pan)]+ (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)2(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. In each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)]+ and [Ru(bpy)(pan)(pic)]+ complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d6, S = 0) and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)–Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)2] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy)(pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation.  相似文献   

6.
The reaction of benzoyl chloride with [Rh(dppp)2]Cl at 190°C and with [Rh(dppp)Cl]1 or 2 at 25°C where dppp  1,3-bis(diphenylphosphino)propane has been examined. In both cases the five coordinate compound RhCl2(COPh)-(dppp) was rapidly formed and isolated in high yield. This compound does not undergo phenyl migration to RhCl2(CO)(Ph)(dppp) even upon warming to 190°C in benzoyl chloride solution and no decarbonylation products are observed. This is in marked contrast to the reaction of RhCl(PPh3)3 with benzoyl chloride where the migrated product RhCl2(CO)(Ph)(PPh3)2 is formed with the eventual reductive elimination of chlorobenzene. The single crystal X-ray analysis of RhCl2(COPh)(dppp) has been carried out (R  0.036). The compound is square pyramidal with the COPh group in the apical position. The Rh—C bond distance of 1.992(3) Å is short for a RhIII—Cσ bond and indicates dπ → π back bonding.  相似文献   

7.
The Chlorooxoarsenates(III) (PPh4)2[As4O2Cl10] · 2 CH3CN and (PPh4)2[As2OCl6] · 3 CH3CN (PPh4)2[As2Cl8] can be prepared from As2O3, SOCl2 and PPh4Cl in acetonitrile. Its oxidation with chlorine yields PPh4[AsCl6]. This was also obtained directly from arsenic, chlorine and PPh4Cl, (PPh4)2[As4O2Cl10] · 2 CH3CN being a side product; the latter was obtained with high yield from AsCl3, As2O3 and PPh4Cl in acetonitrile. By addition of PPh4Cl it was converted to (PPh4)2[As2OCl6] · 3 CH3CN. According to their X-ray crystal structure analyses, both crystallize in the triclinic space group P 1. The [As4O2Cl10]2– ion can be regarded as a centrosymmetric association product of two Cl2AsOAsCl2 molecules and two Cl ions, each Cl ion being coordinated with all four As atoms. In the [As2OCl6]2– ion the As atoms are linked via the O atom and two Cl atoms.  相似文献   

8.
Treatment of the osmabenzene [Os{CHC(PPh3)CHC(PPh3)CH} Cl2(PPh3)2]Cl ( 1 ) with excess 8‐hydroxyquinoline produces monosubstituted osmabenzene [Os{CH C(PPh3) CHC(PPh3)CH}(C9H6NO)Cl(PPh3)]Cl ( 2 ) or disubstituted osmabenzene [Os{CHC(PPh3)CHC(PPh3)CH} (C9H6NO)2]Cl ( 3 ) under different reaction conditions. Osmabenzene 2 evolves into cyclic η2‐allene‐coordinated complex [Os{CH?C(PPh3)CH=(η2‐C?CH2)}(C9H6NO)(PPh3)2]Cl ( 4 ) in the presence of excess PPh3 and NaOH, presumably involving a P? C bond cleavage of the metallacycle. Reaction of 4 with excess 8‐hydroxyquinoline under air affords the SNAr product [(C9H6NO)Os{CHC(PPh3)CHCHC} (C9H6NO)(PPh3)]Cl ( 5 ). Complex 4 is fairly reactive to a nucleophile in the presence of acid, which could react with water to give carbonyl complex [Os{CH?C(PPh3)CH?CH2}(C9H6NO) (CO)(PPh3)2]Cl ( 6 ). Complex 4 also reacts with PPh3 in the presence of acid and results in a transformation to [Os {CHC(PPh3)CHCHC}(C9H6NO)Cl (PPh3)2]Cl ( 7 ) and [Os{CH?C(PPh3) CH=(η2‐C?CH(PPh3))}(C9H6NO) Cl(PPh3)]Cl ( 8 ). Further investigation shows that the ratio of 7 and 8 is highly dependent on the amount of the acid in the reaction.  相似文献   

9.
Amide-functionalized N-heterocyclic carbene (NHC) precursors such as azolium compounds have been designed and synthesized. Reaction of PdCl2(CH3CN)2 with the NHC-Ag complex derived from the azolium salt gave [(NHC)PdCl2]2 or (NHC)2PdCl2, whereas PdCl2(PPh3)2 reacted with the Ag complex to afford a mixed carbene/phosphine complex such as (NHC)(PPh3)PdCl2 together with a cationic [(NHC)(PPh3)2PdCl]+Cl whose structure was characterized by X-ray crystallographic studies. Thus, the library of NHC-Pd complexes with a tethered amide group has been successfully expanded.  相似文献   

10.
Crystal Structures of [ReCl4(PhC?CPh)]2 · 2 CH2Cl2 and PPh4[ReOCl4] Single crystals of [ReCl4(PhC?CPh)]2 · 2 CH2Cl2 were obtained by chilling dilute solutions of the solvate [ReCl4(PhC?CPh)POCl3] in CH2Cl2. PPh4[ReOCl4] was formed by the reaction of the diphenyl acetylene complex [ReCl5(PhC?CPh)] with PPh4Cl · H2O in CH2Cl2 solution. [ReCl4(PhC?CPh)]2 · 2 CH2Cl2: space group P21/c, Z = 2, 2244 observed independent reflexions, R = 0.038. Lattice parameters (19°C): a = 987.2 pm; b = 1533.9 pm; c = 1193.8 pm; β = 90.17° The compound forms centrosymmetrical dimeric molecules with ReCl2Re bridges with Re? Cl distances of 241.2 and 267.6 pm. The longer Re? Cl bond is situated in trans-position to the equatorial, side-on coordinated diphenyl acetylene ligand with mean Re? C distances of 200 pm. PPh4[ReOCl4]: space group P4/n, Z = 2, 1487 observed, independent reflexions, R = 0.047. Lattice parameters (19°C): a = b = 1272.0 pm; c = 771.3 pm. The compound crystallizes in the AsPh4[RuNCl4] type; it consists of [ReOCl4]? anions and PPh4+ cations. The anions are tetragonal with C4v symmetry and bond lengths Re? O = 165.4 pm and Re? Cl = 232.6 pm; the bond angle OReCl is 106.7°.  相似文献   

11.
Reaction of Cy3PCS2 (Cy = cyclohexyl) with the hydrido complexes [RuClH(CA)(PPh3)3] (A  O, S), [RuH(CO)(NCMe)2(PPh3)2]+, and [RuH(OClO3)(CO)(CNtBu)(PPh3)2] leads to the complex cations [RuH(CA)(PPh3)22-S2CPCy3)]+, [Ru(η2-S2CHPCy3)(CO) (PPh3)2]+, [RuH(η1-S2CPCy3)(CO)(CNtBu)(PPh3)2]+. The σ-vinyl complex [Ru(CHCHC6H4Me-4)Cl(CO)(PPh3)2] reacts with Cy3PCS2 to give the cationic complex [Ru(CHCHC6H4Me-4) (CO)(PPh3)22-S2CPCy3)]+, but this complex is not formed by hydroruthenation of HCCC6H4Me-4 by [RuH(CO)(PPh3)22-S2CPCy3)]+. The inter-relationships between the above complexes are discussed.  相似文献   

12.
Complexes of [Mn(MF)2(Cl)2]·2H2O (1), [Fe(MF)2(Cl)2]Cl·4H2O (2), [Ni(MF·HCl)2(Cl)2]·6H2O (3), [Cu(MF·HCl)2(Cl)2] (4), [Zn(MF·HCl)2](NO3)2·6H2O (5), [Cd2(MF·HCl)(Cl)4(H2O)] (6), [Mg(MF·HCl)2(Cl)2]·6H2O (7), [Sr2(MF·HCl)(Cl)4(H2O)] (8), [Ba(MF·HCl)2(Cl)2]·2H2O (9), [Pt(MF)4] (10), [Au(MF)3]Cl3 (11), and [Pd(MF)2]Cl2 (12) were synthesized from Legitional behavior of metformin drug as a diabetic agent. The authenticity of the transition and non-transition metal complexes were characterized by elemental analyses, molar conductivity, (infrared, UV–Vis) spectra, effective magnetic moment in Bohr magnetons, electron spin resonance, thermal analysis, X-ray powder diffraction as well as scanning electron microscopy. Infrared spectral studies as well as elemental analyses revealed the existence of metformin in the base or hydrochloride salt forms in the chelation state acts as a bidentate ligand while the platinum(IV) complex is coordinated through the deprotonation of –NH group. The magnetic and electronic spectra of Mn(II), Fe(III), Ni(II), and Cu(II) complexes suggest an octahedral geometry. Antimicrobial screening of metformin and its complexes were determined against the (G+ and G?) bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa) and fungi (Aspergillus flavus and Candida albicans).  相似文献   

13.
The reaction of [RhCl2(HPhL)(PhL)] with MII(ClO4)2·6H2O in presence of alkali has furnished trinuclear [RhCl2(PhL)2]2M(H2O)2·H2O (HPhL is phenylazobenzaldoxime; M = Mn, Co, Ni). A similar reaction with MI(PPh3)2NO3 yielded binuclear [RhCl2(PhL)2]M(PPh3)2 (M = Cu, Ag). In these molecules the oximato group acts as a bridge between RhIII (bonded at N) and MII or MI (bonded at O). In structurally characterized [RhIIICl2(PhL)2]2Mn(H2O)2.H2O the centrosymmetric distorted octahedral MnO6 coordination sphere is spanned by four oximato oxygen atoms and two water molecules lying in trans position. In the lattice the neighbouring molecules are held together by H2O⋯H2O⋯H2O hydrogen bonds generating infinite zigzag chains. The manganese atoms lie parallel to the C-axis, the shortest Mn...Mn distance being 7.992 ?. Magnetic exchange interactions if any are small as seen in room temperature magnetic moments. The manganese system displays a strong EPR signal near g = 2.00. In the complex [RhCl2(PhL)2]Cu(PPh3)2 the copper atom is coordinated to two oximato oxygen atoms and the two phosphorus atoms in a distorted tetrahedral geometry. The softness of the phosphine ligand is believed to sustain the stable coordination of hard oximato oxygen to soft CuI. The coordination sphere of the RhIII atom in both the complexes is uniformly trans-RhN4Cl2.  相似文献   

14.
Treatment of [Ru(CHCHCH2PPh3)X(CO)(PPh3)2]+ (X=Cl, Br) with KTp (Tp=hydridotris(pyrazolyl)borate) and NaBPh4 produced [TpRu(CHCHCH2PPh3)(CO)(PPh3)]BPh4. Reaction of RuHCl(CO)(PPh3)3 with HCCCH(OEt)2 produced Ru(CHCHCH(OEt)2)Cl(CO)(PPh3)2, which reacted with KTp to give TpRu(CHCHCHO)(CO)(PPh3). Treatment of [TpRu(CHCHCH2PPh3)(CO)(PPh3)]BPh4 with NaN(SiMe3)2 and benzaldehyde produced TpRu(CHCHCHCHPh)(CO)(PPh3). The later complex was also produced when TpRu(CHCHCHO)(CO)(PPh3) was treated with PhCH2PPh3Cl/NaN(SiMe3)2. The bimetallic complex [TpRu(CO)(PPh3)]2(μ-CHCHCHCHC6H4CHCHCHCH) was obtained from the reaction of [TpRu(CHCHCH2PPh3)(CO)(PPh3)]BPh4 with NaN(SiMe3)2 and terephthaldicarboxaldehyde.  相似文献   

15.
Five-coordinated Complexes of Osmium (VIII) and Rhenium (VII). Crystal Structure of PPh4[OsO4Cl] · CH2Cl2 The five-coordinated anionic complexes [OsO4Cl]?, [OsO4N3]?, and [ReO3Cl2]? were isolated as tetraphenylphosphonium salts from reactions of OsO4 and ReO3Cl with PPh4Cl and PPh4N3, respectively, in dichloromethane solution. The compounds which are characterized by their i.r. spectra, are thermally sensitive and form crystalline powders with colours ranging from orange to violet. The crystal structure of PPh4[OsO4Cl] · CH2Cl2 was determined and refined with X-ray diffraction data. (4212 independent, observed reflexions, R = 0.032). It crystallizes in the monoclinic space group P2/b with four formula units per unit cell. The cell dimensions are at ?110°C a = 1754, b = 2184 pm, c = 692 and γ = 106.7°. The structure consists of tetraphenylphosphonium cations and anions [OsO4Cl]? with five-coordinated Os atoms in a trigonal bipyramidal geometry with the chlorine ligand in an axial position. The anion can also be regarded as a OsO4 tetrahedron, monocapped by a chloride ion. Each chloride ion is linked with two CH2Cl2 molecules via hydrogen bridges, forming chains in the direction c. The Os? Cl bond length (276 pm) is very long; the average OsO distance (172 pm) corresponds to that in the OsO4 molecule (170 pm).  相似文献   

16.
Treatment of [Ru(PPh3)3Cl2] with one equivalent of tridentate Schiff base 2-[(2-dimethylamino-ethylimino)-methyl]-phenol (HL) in the presence of triethylamine afforded a ruthenium(III) complex [RuCl3(κ2-N,N-NH2CH2CH2NMe2)(PPh3)] as a result of decomposition of HL. Interaction of HL and one equivalent of [RuHCl(CO)(PPh3)3], [Ru(CO)2Cl2] or [Ru(tht)4Cl2] (tht = tetrahydrothiophene) under different conditions led to isolation of the corresponding ruthenium(II) complexes [RuCl(κ3-N,N,O-L)(CO)(PPh3)] (2), [RuCl(κ3-N,N,O-L)(CO)2] (3), and a ruthenium(III) complex [RuCl2(κ3-N,N,O-L)(tht)] (4), respectively. Molecular structures of 1·CH2Cl2, 2·CH2Cl2, 3 and 4 have been determined by single-crystal X-ray diffraction.  相似文献   

17.
Abstraction of iodide from Ir(CF3)ClI(CO)(PPh3)2 (1) by AgSbF6 in the presence of acetonitrile yields the cationic complex [Ir(CF3)Cl(MeCN)(CO)(PPh3)2]+ [SbF6] (2). The acetonitrile group of 2 is readily displaced, and 2 reacts with para-tolyl isocyanide to yield [Ir(CF3)Cl(CN-p-tolyl)(CO)(PPh3)2]+ [SbF6] (3). The addition of NaOMe to 3 results in the methoxyester complex Ir(CF3)(COOMe)Cl(CN-p-tolyl) (PPh3)2 (4). The acetonitrile ligand of 2 is also displaced by anions, including H. Thus, 2 reacts with LiEt3BH to give Ir(CF3)HCl(CO)(PPh3)2 (5), in which the hydrido and trifluoromethyl ligands are mutually trans. In contrast, the addition of excess NaBH4 to 2 affords the novel dihydrido complex trans-Ir(CF3)H2(CO)(PPh3)2 (6). Investigations into the potential use of 5 and 6 as precursors of an iridium(I) complex such as Ir(CF3)(CO)(PPh3)2 are also described.  相似文献   

18.
A procedure for the synthesis of trans-Ru(NO)(Py)2Cl2(OH) (I) from K2[Ru(NO)Cl5] was proposed. Treatment of hydroxo complex I with HCl or H2SO4 at room temperature gave the corresponding salts trans-[Ru(NO)(Py)2Cl2(H2O)]Cl · 2H2O (II) and trans-[Ru(NO)(Py)2Cl2(H2O)]HSO4 (III). All the complexes obtained were characterized by 1H and 13C NMR and IR spectroscopy and elemental analysis; their structures were determined by X-ray diffraction. The structures are stabilized by π-stacking between the pyridine ligands of adjacent complex species.  相似文献   

19.
Reactions of CpRuCl(PPh3)2 with bis(phosphino)amines, X2PN(R)PX2 (1 R=H, X=Ph; 2 R=X=Ph; 3 R=Ph, X2=O2C6H4) give neutral or cationic mononuclear complexes depending on the reaction conditions. Reaction of 1 with CpRuCl(PPh3)2 gives one neutral complex, [CpRu(Cl)(η2-Ph2PN(H)PPh2)] (4) and two cationic complexes, [CpRu(η2-Ph2PN(H)PPh2)(η1-Ph2PN(H)PPh2)]Cl (5) and [CpRu(PPh3)(η2-Ph2PN(H)PPh2)]Cl (6), whereas the reaction of 2 with CpRuCl(PPh3)2 leads only to the isolation of cationic complex, [CpRu(PPh3)(η2-Ph2PN(Ph)PPh2)]Cl (7). The catechol derivative 3, in a similar reaction, affords an interesting mononuclear complex [CpRu(PPh3){η1-(C6H4O2)PN(Ph)P(O2H4C6)}2]Cl (8) containing two monodentate bis(phosphino)amine ligands. The structural elucidation of the complexes was carried out by elemental analyses, IR and NMR spectroscopic data.  相似文献   

20.
Reaction of Tin Chlorides with Polysulfides. Crystal Structures of (PPh4)2[SnCl2(S6)2], (PPh4)2[Sn4Cl4S5(S3)O], and (PPh4)2[SnCl6] · S8 · 2CH3CN . The reaction of PPh4[SnCl3] with Na2S4 in acetonitrile in the presence of small amounts of water yields (PPh4)2[Sn4Cl4S5(S3)O] and minor amounts of (PPh4)2[SnCl2(S6)2], PPh4Cl · 2S8 and (PPh4)2[SnCl6]. SnCl4 is partially reduced by (PPh4)2Sx, PPh4[SnCl3] and (PPh4)2[SnCl6] · S8 · 2CH3CN being produced. According to the X-ray crystal structure determination the [Sn4Cl4S5(S3)O]2?-ion consists of an O atom that is coordinated by four Sn atoms which in turn are liked with one another by five single S atoms and one S3 group. In the [SnCl2(S6)2]2?-ion the Sn atom is octahedrally coordinated by two Cl atoms in trans arrangement and by two chelating S6 groups. Octahedral [SnCl6]2? ions and S8 molecules in the crown conformation are present in (PPh4)4[SnCl6] · S8 · 2CH3CN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号