首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
《Polyhedron》1986,5(3):871-875
The complexes of arsenic(III), antimony(III), bismuth(III), tin(II) and lead(II) with monomethylsubstituted piperidinodithiocarbamates of general formula M(Rdtc)3 and M(Rdtc)2 have been prepared and characterized by spectroscopic methods. The results of the spectroscopic studies indicate that the dithiocarbamate ligands are always bidentate, in both the 1:3 and the 1:2 complexes. All the complexes are nonconducting in DMF solution. The thermal behaviour of the complexes has been investigated by TG and DTG techniques. The molecular weight determinations indicate that the trisdithiocarbamates of arsenic and antimony are monomeric, while the bismuth trisderivatives tend to dimerize: polymeric structures can be suggested for the tin(II) and lead(II) compounds.  相似文献   

2.
The ligands, 1-acetylferrocenehydrazinecarboxamide (HL1) and 1-acetylferrocenehydrazinecarbothioamide (HL2), and their Ni(II) and Co(II) complexes were synthesized. The properties of the synthesized compounds were determined by the elemental and spectroscopic analyses. Ni(II) and Co(II) acetates interact with the ligands at the molar ratios 1 : 1 and 1 : 2 to give coloured products. The complexes have octahedral geometry. The ligands are coordinated to Co(II) and Ni(II) centers via the azomethine nitrogen and thiolic sulfur /enolic oxygen atom. The ligands and their Co(II) and Ni(II) complexes were screened for antibacterial and antifungal activities. The Co(II) and Ni(II) complexes show enhanced inhibitory activity as compared to their parent ligands. The DNA cleavage activity of the Co(II) and Ni(II) complexes was determined by gel electrophoresis. It was shown that the complexes have better cleavage activity than the ligands. The antioxidant activity of the complexes was also evaluated and used to examine their scavenging ability on hydrogen peroxide.  相似文献   

3.

2-[(pyridin-2-ylmethylidene)amino]-6-aminopyridine (L1), 2-[(2-furylmethylene)]phenylenediamine (L2) and their Mn(II) and Pd(II) complexes have been synthesized as potential photoactive materials, and their structures were elucidated using a variety of physicochemical techniques. The molar conductance data reveal that all complexes are nonionic in nature. Theoretical calculations were computed using the density functional theory, where the B3LYP functional was employed. The experimental results and the calculated parameters revealed a square planar and octahedral geometry around Pd(II) and Mn(II), respectively, in which the ligands coordinate to the metal ions as a bidentate manner. The thermal decomposition of the complexes has been studied. The catalytic activity of the complexes toward hydrogen peroxide decomposition reaction was investigated at 35 and 55 °C. In addition, the synthesized ligands, in comparison with their metal complexes, were screened for their antibacterial activity.

  相似文献   

4.
Four heterocyclic Schiff-base ligands derived from condensation of 4-amino-1,3 dimethyl-2,6 pyrimidine-dione with 2-hydroxybenzaldehyde, 2-methoxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde and 4-(dimethylamino) benzaldehyde, (HL1, L2, HL3and L4), respectively, and their Co(II) and Ni(II) complexes have been prepared and characterized via elemental analysis, molar conductance, magnetic moment, thermal and XRPD analysis as well as spectral data (IR, 1H-NMR, mass and solid reflectance). IR data reveal that the ligands are bidentate neutral ligands except HL1, which is monobasic tridentate with coordination sites azomethine (N), carbonyl (O) and phenolic (O). Conductance data suggest that all complexes are non-electrolytes, except cobalt(II) complexes of L2and HL3are 1 : 1 electrolytes. The mass spectra confirm the proposed structure of the ligands and their complexes. The solid reflectance spectral data and magnetic moment measurements suggest octahedral, tetrahedral and square planar geometrical structures for the metal complexes. The spectral data were utilized to compute the important ligand field parameters B, β and Dq; LFSE also was calculated. The thermal behavior is also studied. Antibacterial and antifungal properties of the ligands and their complexes show broad-spectrum activities and the metal complexes show higher activity than the free ligands.  相似文献   

5.
Anhydrous copper(II) furoate and copper(II) thiophene-2-carboxylate have been Synthesized. They are formulated as dimeric species with four carboxylate bridges. The thiophene and furan moieties give rise to polymeric structures. Electron spin resonance spectra and magnetic susceptibility measurements show that the dimers have a singlet ground state and a thermally populated triplet state. The exchange coupling constants, 2J, are ?322 and ?312 cm?1 for the furoate and thiophene-2-carboxylate complexes, respectively. The electronic and infrared spectra are also discussed.  相似文献   

6.
1-S-Methylcarbodithioate-4-substituted thiosemicarbazides (L1-L3) have been prepared and confirmed by spectral data and elemental analysis. Co(II), Ni(II), Cu(II), Cd(II) and Zn(II) complexes with L1-L3 have been prepared and characterized by elemental and thermal analyses, molar conductance, magnetic moment, as well as spectral data (IR, 1H NMR, mass and electronic spectra). The molar conductance data reveal that the chelates are non-electrolytes. The IR and 1H NMR spectra showed that L1-L3 are deprotonated in the complexes and act as binegative SNNS donors. The electronic spectra of the complexes as well as their magnetic moments provide information about geometries. Thermogravimetric analysis of some complexes suggests different decomposition steps and ending with metal sulfide as final product. The redox properties of the complexes are explored by cyclic voltammetry.  相似文献   

7.
Abstract

Five coordination complexes with Mn2+ (1), Co2+ (2), Ni2+ (3), Cu2+ (4), and Zn2+ (5) containing acesulfame (ace) and N,N-diethylnicotinamide (dena) ligands were synthesized and structural binding properties investigated. Four compounds (1, 2, 4, and 5) were examined with single crystal X-ray diffraction methods. The structures containing Mn(II), Co(II), and Zn(II) were iso-structural. Six-coordination of metal cations were completed with two moles dena and four aqua ligands. The dena ligands were coordinated via pyridine nitrogen as neutral-monodentate. Charge stabilities of the complexes are complemented by two moles monoanionic ace ligands, located outside of the coordination unit. In the Cu(II) complex, the coordination is completed by acidic nitrogen and carbonyl oxygen atoms of two ace ligands and pyridine nitrogen of two moles dena ligands. The coordination to Cu(II) for ace ligands was monoanionic-bidentate. All metal cations in the structure are distorted octahedral. Thermal decomposition of complexes begins with removal of the aqua molecules from the structures and is completed by combustion of organic ligands. The final decomposition products of all structures have been identified as corresponding metal oxides. Some biological applications (anti-fungal/anti-bacterial) were studied using 15.  相似文献   

8.
Summary ZnII, CdII and HgII complexes of sulfadrugs,viz., sulfathiazole, sulfadiazine, sulfamerazine and sulfamethazine were prepared and characterized by analytical and spectroscopic data. The complexes are insoluble and melt with decomposition. The drugs act as bidentate ligands yielding polymeric complexes except for the ZnII(sulfamethazine) complex in which the drug is monodentate.  相似文献   

9.
New complexes of Cd(II), Zn(II) and Ni(II) with 2-quinolinecarboxaldehyde selenosemicarbazone (Hqasesc) were synthesized and structurally characterized. The structure of the ligand, Cd(II) and Zn(II) complexes was determined by NMR and IR spectroscopy, elemental microanalysis and molar conductivity measurements. Both complexes occur in solution in two forms, the major tetrahedral and minor octahedral. In the major Cd(II) complex one qasesc ligand is coordinated as a tridentate, the fourth coordination site being occupied by acetate, while in the major Zn(II) complex two qasesc ligands are coordinated as bidentates. In both minor complexes two qasesc ligands are coordinated as tridentates forming the octahedral geometry around the central metal ion. The only paramagnetic complex in the series is Ni(II) complex for which X-ray structure analysis was performed. The complex has the angularly distorted octahedral geometry with two qasesc ligands coordinated as tridentates, in a similar way as in the minor complexes of Cd(II) and Zn(II).  相似文献   

10.
Binuclear cobalt(II), nickel(II), copper(II) and zinc(II) complexes of general composition [M2L1-2(μ-Cl)Cl2] · nH2O with the Schiff-base ligands (where L1H and L2H are the potential pentadentate ligands derived by condensing 2,6-diformyl-4-methylphenol with 4-amino-3-antipyrine and 2-hydroxy-3-hydrazinoquinoxiline, respectively) have been synthesized and characterized. Analytical and spectral studies support the above formulation. 1H-NMR and IR spectra of the complexes suggest they have an endogenous phenoxide bridge, with chloride as the exogenous bridge atom. The electronic spectra of all the complexes are well characterized by broad d–d and a high intensity charge-transfer transitions. The complexes are chloro-bridged as evidenced by two intense far-IR bands centered around 270–280 cm−1. Magnetic susceptibility measurements show that complexes are antiferromagnetic in nature. The compounds show significant growth inhibitory activity against fungi Aspergillus niger and Candida albicans and moderate activity against bacteria Bacillus cirroflagellosus and Pseudomonas auresenosa.  相似文献   

11.
Heteronuclear complexes containing oxorhenium(V), with Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and UO2(VI) ions were prepared by the reaction of the complex ligands [ReO(HL1)(PPh3)(OH2)Cl]Cl (a) and/or [ReO(H2L2)(PPh3)(OH2)Cl]Cl (b), where H2L1?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone), with transition and actinide salts. Heterodinuclear complexes of ReO(V) with Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) were obtained using a 1?:?1 mole ratio of the complex ligand and the metal salt. Heterotrinuclear complexes were obtained containing ReO(V) with UO2(VI) and Cu(II) using 2?:?1 mole ratios of the complex ligand and the metal salts. The complex ligands a and b coordinate with the heterometal ion via a nitrogen of the heterocyclic ring and the nitrogen atom of the C=N7 group. All transition metal cations in the heteronuclear complexes have octahedral configurations, while UO2(VI)?complexes have distorted dodecahedral geometry. The structures of the complexes were elucidated by IR, ESR, electronic and 1H NMR spectra, magnetic moments, conductance and TG-DSC measurements. The antifungal activities of the complex ligands and their heteronuclear complexes towards Alternaria alternata and Aspergillus niger showed comparable behavior with some well-known antibiotics.  相似文献   

12.
Potentially tetradentate ligands N,N"-di(2-hydroxybenzyl)ethylenediamine (L1) and N,N"-di(2-hydroxybenzyl)o-phenylenediamine (L2) and complexes of Cu(II), Co(II), and Ni(II) with L1and L2were synthesized. The EPR and electronic spectroscopy methods were used to reveal the octahedral structure of the Cu(II) complex with L1in the solid state. In water–alcohol solutions, the Cu(II) and Ni(II) complexes with both ligands have distorted octahedral structures. The Co(II) complexes form dioxygen adduct with L1. In the presence of oxygen, the ligands in the obtained complex compounds can undergo oxidative dehydrogenation with selective formation of the respective disalicylaldimines. In the case of L2, the oxidative dehydrogenation is observed for the complexes of all studied metals in comparatively mild conditions (T= 30°C, methanol and other solvents), while in the case of L1, it occurs only with the Co(II) complexes in the presence of pyridine.  相似文献   

13.
The infrared spectra of eight complexes of general formula [ML2(NCS)2] (M = Co, Ni, Cu, Zn; L = aniline or p-toluidine) have been determined over the range 4000–4150 cm?1. Colour, magnetic moments and IR spectra are consistent with polymeric octahedral coordination in the Co(II) and Ni(II) complexes and polymeric tetragonal coordination in the Cu(II) complexes, while the Zn(II) complexes are assigned polymeric octahedral (L = aniline) and tetrahedral (L = p-toluidine) structure on the basis of their IR spectra. Independent 15N-labelling of the nitrogen atoms of the amino and isothiocyanate groups yields assignments for the internal vibrations of both groups and enables the metal-amine and metal—isothiocyanate stretching vibrations (vM-NH2 and vM-NCS) to be distinguished. Both vM-NH2 and vM-NCS are metal ion dependent in the Irving-Williams sequence (Co < Ni < Cu > Zn) expected from their proposed structures while the vN-H and vN-CS vibrations are inversely related to the masses of the coordinated metal ions.  相似文献   

14.
Two cobalt(II) halide complexes with 1,2,4-triazole as a ligand were synthesized. Their structures were determined by extended x-ray absorption fine structure (EXAFS) and powder x-ray diffraction (XRD). Both complexes [Co(Htrz)Cl2]n ( 1 ) and {[Co(Htrz)2(trz)]BF4}n ( 2 ) form one-dimensional polymeric chain and the distances of Co⋯Co are 3.3521(2) Å and 3.8629(2) Å, respectively. The Htrz and Cl are bridging ligands to connect two Co(II) ions in 1 , and the local environment of Co site is in a distorted octahedron with {CoN2Cl4} core. In complex 2 , two Htrz and one trz are bridging ligands to connect two Co(II) ions, and the local geometry of Co is in a pseudo octahedron with {CoN6} core. The analysis of Co LII,III-edge XAS indicates that the Co(II) of both complexes are at high spin state with t2g5eg2 configuration and the crystal field strength (10Dq) is about 1.2 eV. The broken-symmetry DFT calculations indicate that antiferromagnetic coupling state of Co⋯Co is the most stable state in both complexes; and the coupling constants of 1 and 2 are −0.32 cm−1 and −3.70 cm−1, respectively. Based on the distances of Co⋯Co and coupling constants, such antiferromagnetic interaction is achieved through triazole ligands.  相似文献   

15.
Manganese and iron complexes of Schiff bases derived from 6-formylkhellin were prepared and characterized. Complexes of o-phenylenediamine derivative (ligand (I)) are monomeric or dimeric whereas those of p-phenylenediamine derivative (ligand (II)) are polymeric. The complexes obtained are characterized by a lower magnetic moment values. The complexes also have different solvent of crystallization with different nature of interaction. The thermal behaviour of the ligands and their metal complexes was investigated by means of DTA, TG, IR and X-ray diffraction spectroscopy. Ligand (I) shows different thermal behaviour from that of ligands (II) and (III). The complexes of ligand (II) give abnormal oxides as a final product during their thermal decomposition. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The Cu(II) complexes with hetarylformazanes (HF) formed in solutions, polycrystals, and AN-18 polymeric ionite modified with HF were studied by EPR method and were found to have almost identical structures. The configuration of the Cu2+ coordination surrounding (square-planar or pseudotetrahedral) is specified by the substituents at N1 in formazane fragments. Complexes with coordination unit Cu(4N) were formed mainly, when the ligands were taken in excess, while in the case of the ligand deficiency and with the coordinating OH group in benzene ring, the complexes with the Cu(3NO) coordination unit were formed. The covalence of in-plane metal-ligand σ-bond was found to be affected by the substituents. The formation of binuclear copper complexes in solutions and polycrystals was established in the case of deficiency of the ligand with SO3H substituent in benzene ring.  相似文献   

17.
Several new 1D coordination polymers have been synthesised using the anionic ligand carbamoyldicyanomethanide, C(CN)2(CONH2) (cdm). The polymeric complexes [Cu(cdm)2(py)2]·2MeOH (1), [Cu(cdm)2(4-Etpy)2]·2MeOH (2), [Cu(cdm)2(3,5-Me2pzH)2]·2MeOH (3) and [Cu(cdm)2(3-HOCH2py)2]·2MeOH (4) (py = pyridine; 3,5-Me2pzH = 3,5-dimethylpyrazole) contain Cu(II) atoms bridged by μ2-(N,N′) cdm ligands between equatorial and axial coordination sites. The use of monodentate co-ligands brings about polymeric products, in contrast to the use previously of chelating co-ligands which facilitate the formation of discrete products. These 1D polymeric complexes are connected by hydrogen bonding between the amide functionalities and the lattice solvent. In the structures of 3 and 4 the neutral ligands also contain hydrogen bond donor groups that supplement the amide ring motif. Two other complexes have been obtained that are polymeric chains of alkoxide-bridged Cu(II) dimers. The complexes [Cu(cdm)(MeO)(2-amp)] (5) and [Cu(cdm)(dmap)] (6) (2-amp = 2-(aminomethyl)pyridine and dmap = dimethylaminopropoxide) are remarkably similar despite the different ligands that they contain. Bridging between dimers is via μ2-(N,O) cdm ligands, consequently altering the nature of the hydrogen bonding between adjacent chains compared to the simple polymeric species 13.  相似文献   

18.
《Polyhedron》1988,7(5):337-343
The new Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes with tridentate Schiff base, the product of condensation of o-aminobenzyl alcohol with salicylaldehyde have been synthesized and characterized by elemental analysis, IR, electronic, EPR and Mössbauer spectra, thermal analysis, magnetic susceptibility and molecular weight measurements. Dimeric or polymeric structures for the investigated complexes were proposed. The interaction of the cobalt complex with dioxygen is also described.  相似文献   

19.
The structures of three new Cu(II) complexes with pyridine carboxamide ligands (Me2bpb, 6-Me2-Mebpb, and 6-Me2-Me2bpb) have been determined. 6-Methyl-substituted pyridyl bpb ligands produced dimeric compounds with Cu(II) ions, and weak interactions between dimers can make even polymeric compounds, while bpb ligands without 6-methyl substitution produced monomeric Cu(II) complexes. The large distortion effects of 6-methyl-substitution are shown in Cu(II) complexes with 6-methyl-substituted pyridyl bpb ligands. This result suggests that the steric effect of 6-methyl-substitution plays important role for distortion of the structure, and 6-methyl-substitution can also influence to make polymeric compounds with interactions between Cu(II) ions and neighbor carbonyl oxygen atoms. In addition, the voltammetric behaviors of the Cu complexes were examined and classified into two groups, with/without 6-methyl group. The complexes without 6-methyl group show reversible redox waves at −1.6 V, and the complexes with 6-methyl group do irreversible redox ones at −1.3 V, indicating that the presence of the methyl group of 6-position of the complex makes the reduction of the complexes easier.  相似文献   

20.
In the present study, two new ligands, 4-chlorobenzal-azino-isonitrosoacetophenone (L1), 4-methylbenzal-azino-isonitrosoacetophenone (L2) and their metal complexes were synthesized using acetophenone as a starting material. The coloured complexes were prepared by the addition of chloride salts of Ni(II), Co(II), Cu(II) and Zr(IV) ions to a solution of ligands. In conclusion, the structures of the obtained ligands and their complexes were characterized by FT-IR, and 1H NMR spectra, AAS (atomic absorption spectrum) analysis, magnetic susceptibilities as well as elemental analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号