首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Polyhedron》1999,18(8-9):1141-1145
Exchange reactions of trans-[PdXPh(SbPh3)2] (1) (X=Cl or Br) with ligands L in refluxing dichloromethane give the palladium phenyl complexes [PdXPhL2] (X=Cl, L=PPh3, AsPh3, L2=2,2′-bipyridine (bipy), 4,4′-dimethyl-2,2′-bipyridine (dmbipy), 1,10-phenanthroline (phen); X=Br, L=PPh3, L2=bipy). Treatment of the complexes with bis(diphenylphosphino)methane (dppm) in refluxing dichloromethane gives [PdXPh(dppm]2. These complexes have been characterised by microanalysis, IR and 1H NMR spectroscopic data together with single crystal X-ray determinations of the phenyl palladium complexes, trans-[PdClPh(PPh3)2], [PdClPh(bipy)], [PdClPh(dppm)]2, and [PdBrPh(dppm)]2.  相似文献   

2.
Pure cis and trans isomers of CpMo(CO)2(L)X (Cp = η5-C5H5, L = PPh3 or PBu3, X = Br, or I) have been separated by chromatography and characterized by infrared and proton NMR spectroscopy. The reactions of trans-CpMo(CO)2(L)CH3 with HgX2 (X = Cl, Br, I, SCN) afford cis-CpMo(CO)2(L)X in high yield. Both linkage isomers are obtained in the reaction with Hg(SCN)2, L = PPh3. The mercuric halides react with CpMo(CO)2(L)COCH3 to form the metalmetal bonded derivatives trans-CpMo(CO)2(L)HgX. Reactions of CpMo(CO)2(L)CH3 or CpMo(CO)2(L)COCH3 with bromine or iodine yield the halide complexes CpMo(CO)2(L)X (X = Br and I, respectively), the product mixtures containing high proportions of the trans isomers.  相似文献   

3.
M(CO)5X (M = Mn, Re; X = Cl, Br, I) reacts with DAB (1,4-diazabutadiene = R1N=C(R2)C(R2)′=NR′1) to give M(CO)3X(DAB). The 1H, 13C NMR and IR spectra indicate that the facial isomer is formed exclusively. A comparison of the 13C NMR spectra of M(CO)3X(DAB) (M = Mn, Re; X = Cl, Br, I; DAB = glyoxalbis-t-butylimine, glyoxyalbisisopropylimine) and the related M(CO)4DAB complexes (M = Cr, Mo, W) with Fe(CO)3DAB complexes shows that the charge density on the ligands is comparable in both types of d6 metal complexes but is slightly different in the Fe-d8 complexes. The effect of the DAB substituents on the carbonyl stretching frequencies is in agreement with the A′(cis) > A″ (cis) > A′(trans) band ordering.Mn(CO)3Cl(t-BuNCHCHNt-Bu) reacts with AgBF4 under a CO atmosphere yielding [Mn(CO)4(t-BuNCHCHN-t-Bu)]BF4. The cationic complex is isoelectronic with M(CO)4(t-BuNCHCHNt-Bu) (M = Cr, Mo, W).  相似文献   

4.
Bis[3-(dimethylarsino)propyl]phenylarsine, (tas), reacts with trans-Ir(CO)(EPh3)2 X (E = P, As; X = F, Cl, Br, I) to yield the (Ir(CO)(tas)] X complexes. In contrast, the similar ligand bis[3-(dimethylarsino)propyl]phenylphosphine, (dap), reacts with trans-Ir(CO)(EPh3)2X (E = P, As; X = Cl, Br, I) to yield a mixture of [Ir(CO)(dap)X] and [Ir(CO)(dap)]X, and with trans Ir(CO)(EPh3)2F (E = P, As) to yield solely [Ir(CO)(dap)F]. The cations [Ir(CO)(L)]+ (L = tas, dap) readily yield tetraphenylborate derivatives, [Ir(CO)(L)]BPh4. The oxygenation of [Ir(CO)(tas)]+ in solution proceeds almost to completion after 15 h, whereas [Ir(CO)(dap)]+ does not appear to undergo oxygenation.  相似文献   

5.
Hydrolysis and Halide Exchange of Pentahalogenomonocarbonyl Osmates(III) The aquo complexes [OsX4(CO)(H2O)]?, [OsX3(CO)(H2O)] and [OsX2(CO)(H2O)3]+, X ? Cl, Br, I, produced by the stepwise hydrolysis of [OsX5(CO)]2?, are isolated as pure solutions by ionophoresis and characterized by their absorption spectra. Due to stability of the monaquo complexes and the different trans-effect of the halides it is possible to prepare the mixed complexes [OsX4–nYn(CO)(H2O)]?, X ≠ Y = Cl, Br, I, n = 1–3, and for n = 2 the pure stereoisomers are formed. A systematic shift is found in charge-transfer bands to the shorter wavelengths when the halides are replaced by H2O, I by Br or Cl and Br by Cl.  相似文献   

6.
The preparation of the bidentate ligand 2, 11-bis(diphenylarsinomethyl)benzo-[c]-phenanthrene ( 1 ) is described. This ligand reacts with appropriate substrates to give mononuclear square planar complexes of type [MX2( 1 )] (M = Pd, Pt; X = Cl, Br, I) and [M′Cl(CO)( 1 )] (M′ = Rh, Ir) in which ligand 1 spans trans-positions. This is confirmed by the crystal structure of [PtCl2( 1 )]. 1H-NMR. spectra of the complexes are discussed and compared with those of model compounds trans-[MCl2( 12 )2] (M = Pd, Pt) and [M'Cl(CO)( 12 )2] (M′ = Rh, Ir; 12 = AsBzPh2).  相似文献   

7.
1,3-Dimethyl-2-imidazolidinone (dimethylethylene urea, DMEU) and 1,3-di- methyl-3,4,5,6-tetrahydro-2(IH)-pyrimidinone (dimethylpropylene urea, DMPU) adducts of the type Ph3SnX·L (X = Cl, Br and I), Ph3PbX·L (X = Br, I), 3Ph3PbCl·2DMEU and 2Ph3PbCl · DMPU have been prepared and characterized. Assignments are made for ν(CO) and ν(CN) frequencies in the IR, and for skeletal frequencies observed in both the IR and Raman spectra in the range 400 to 100 cm?1 Infrared measurements show that the adducts are bound through the carbonyl oxygen, and are highly dissociated in dichloromethane solution. 1H and 119Sn or 207Pb NMR measurements reveal that ligand exchange, fast on the NMR time scale, occurs in solution. Coordination of the ligand causes a large upfield shift in the 119Sn or 207Pb resonances, but Ph3MI · L have shifts similar to those for the parent iodides, indicating almost complete dissociation. Thermodynamic parameters are reported for the dissociation of Ph3SnX · DMPU (X = Cl, Br) in CH2Cl2 solution.  相似文献   

8.
Upon treatment of trans-[OsX4(CO)2]? or [OsX5(CO)]2? with oxalate in aqueous solution new complexes of the type mer-[OsX3(CO)ox]2? (X  Cl, Br, I) are formed. The IR and Ra spectra are assigned according to point group Cs. In the UV/VIS spectra, recorded at 10 K, charge transfer transitions from ligand levels, splitted by spin-orbit coupling, (π + σ)t1u(X) and πt2u(X) to t2g(Os3+) are observed. Two weak bands with vibrational fine structure in the NIR region are assigned to intraconfigurational transitions within the ground term of osmium(III). The assignment is confirmed by bands of the same frequency observed in the electronic Raman spectrum.  相似文献   

9.
Preparation and properties of the diamagnetic planar complexes trans-[p-C6H4(CCPd(X)(PEt3)2)2] (X = Cl, Br, I, NCS) and trans-[p-C6H4(CCPd(X)(PEt3)2)2](ClO4)2 (X = PEt3, pyridine) are described. The structures of the compounds have been determined by 31P and 1H NMR spectroscopy. The IR spectra are discussed.  相似文献   

10.
Carbon-13 NMR spectral data for complexes having the general formula CpM(CO)nX (Cp = η5-C5H5; M = Mo or W, n = 3; M = Fe, n = 2; X = halogen, methyl or acetyl) and their phosphine and isocyanide substitution products are reported. For CpM(CO)3X complexes two carbonyl resonances (1 : 2 ratio) are observed in all cases, consistent with the retention of the “piano-stool” geometries observed in the solid state. Substituted complexes CpM(CO)2(L)X (M = Mo or W; L = PR3 or cyclohexyl isocyanide) are unequivocally assigned cis or trans geometries on the basis of the number of observed carbonyl resonances and values of 2J(PC) for the phosphine substituted derivatives. Spectral data for [M(CO)5X]? (M = Cr, Mo or W; X = Cl, Br or I) and η7-C7H7Mo(CO)2X and the halide derivatives above generally show an increase in the shielding for carbonyls adjacent to the halide ligand in the order Cl < Br < I. Carbonyl resonances are more shielded in isostructural complexes in the order Cr < Mo < W (triad effect).  相似文献   

11.
Me2NNS reacts with [Rh(CO)2Cl]2 to produce the complex cis-Rh(SNNMe2)(CO)2Cl (1). The latter undergoes reversible CO substitution by Me2NNS to give the complex trans-Rh(SNNMe2)2(CO)Cl (2a). Complexes 1 and 2a, in solution lose CO and Me2NSS, respectively, to give the complex trans-(μ-Cl)2[Rh(SNNMe2)(CO)]2 (3). Complex 1 can also be prepared by bubbling CO through a CH2Cl2 solution of Rh(SNNMe2)(diene)Cl (diene = 1,5-cyclooctadiene (4a), norbornadiene (4b)) obtained by a bridge-splitting reaction of Me2NNS with [Rh(diene)Cl]2. 1 and 2a react with EPh3 (E = P, As, Sb) to give the complexes trans-Rh(EPh3)2(CO)Cl. The complexes trans-Rh(E′Ph3)2(CO)X (X = Cl, E′ = As, Sb; X = Br, NCS, E′ = As) undergo reversible E′Ph3 displacement upon treatment with Me2NNS to give the complexes trans-Rh(SNNMe2)2(CO)X (X = Cl (2a), Br (2b), NCS (2c)). Oxidative additions of Br2, I2, or HgCl2 to 2a produce stable adducts, while the reaction of 2a with CH3I gives an inseparable mixture of the adduct Rh(SNNMe2)2(CO)(CH3)ClI and the acetyl derivative Rh(SNNMe2)2(CH3CO)ClI. A mixture of the acetyl derivative (μ-Cl)2[Rh(SNNMe2)(CH3CO)I]2 and the adduct (μ-Cl)2[Rh(SNNMe2)(CO)(CH3)I]2 is obtained by treating 1 with CH3I. The IR spectra of all the compounds are consistent with S-coordination of Me2NNS. Because of the restricted rotation around the NN bond, the 1H NMR spectra of the new compounds exhibit two quadruplets in the range 3.5–4.3δ when 4J(HH) = 0.7–0.5 Hz. When 4J(HH) < 0.5 Hz, the perturbing effect of the quadrupolar relaxation of the 14N nucleus obscures the spin-spin coupling and two broad signals are observed in the range 3.6–4δ.  相似文献   

12.
By decarbonylation of trans-[OsBr4(CO)2]- and exchange of the pure halogen monocarbonyls [OsX5(CO)]2? (X Cl, Br, I) can be prepared and isolated as stable salts with various cations. The complexes are characterized by UV-VIS and vibrational spectra and the observed bands are assigned. The stability and behaviour in solution are comparable with similar hexahalo- or pentahalo-nitrosyl compounds.  相似文献   

13.
《Polyhedron》1987,6(9):1781-1784
New heterotrimetallic complexes were isolated by reaction of M(CO)3(NN)L (M = Mo, W; NN = bipy, phen; L = thioureas) either with HgX2 (X = Cl, Br, I) giving complexes of the formula [M(CO)3(NN)(X)]2Hg or with M′(CO)3(NN′)(Cl)(HgCl) (M′ = Mo, W; NN′ = bipy, phen) producing compounds of the type (Cl)(NN)(CO)3MHgM′(CO)3(NN′)(Cl). These new photosensitive substances were characterized through IR spectroscopy and conductivity measurements. Structures involving XMHgM′X bonding are proposed and the reactions are discussed in terms of an insertion of the fragment M(CO)3(NN) into the HgX bonds.  相似文献   

14.
Crystalline complexes of rhodium(I) of the type [Rh(CO)2(NN)] [RhX2-(CO)2] (NN  2,2'-bipyridyl, 1,10-phenanthroline, 2,9-dimethyl-1,10-phenanthroline, 4,7-dipheynl-1,10-phenanthroline; X = Cl, Br) have been prepared. An ionic chain-like structure involving metal-metal interactions has been established by measurement of the reflectance spectra, absorption electronic spectra and electrical conductivities. The IR spectra have been examined over the 50–4000 cm-1 range.  相似文献   

15.
The i.r. spectra of the complexes M(en)3X2 (M = Mn, Fe, Co, Ni, Cu, Zn), trans-Cu(en)2X2, Ni(en)2X2 and M(en)X2 (M = Ni, Cu, Zn; X = Cl, Br, I) have been studied. Assignments are proposed for the tris(ethylenediamine) complexes on the basis of 15N-, N2D4- and C2D4-labelling of en and the effects of metal ion substitution in relation to our earlier study of [M(en)3]SO4 complexes. Assignments for the bis(ethylenediamine) complexes are based on our observations of halogen-sensitivity and earlier studies on metal isotope labelling and ligand deuteration of the halide complexes and a normal coordinate analysis of the [Cu(en)2]2+ species. The spectra of the halide complexes have been extended below 200 cm−1 for the first time. Finally, the spectra of the mono(ethylenediamine) complexes are discussed in relation to their known or probable structures.  相似文献   

16.
Tris(iso‐propyl)stibine complexes of palladium and platinum of the type [MX2(SbiPr3)2] [M, X = Pd, Cl (1a), Pd, Br (1b), Pd, I (1c), Pt, Cl (2)] have been prepared and characterized by elemental analysis, IR and 1H NMR spectral data. The structure of 1a, established by X‐ray structural analysis, revealed that the palladium atom is in a square planar environment with mutually trans SbiPr3 ligands. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Treatment of trans-[TcX4L2] (X Cl, Br and L PPH3, PMe2Ph) with carbon monoxide (1 atm) in boiling ethyleneglycol methyl ether, gives trans-[TcX-(CO)3L2]. Under these conditions the mer-[TcX3(PMe2Ph)3] (X Cl, Br) gives a mixture of the trans-[TcX(CO)3(PMe2Ph)2] and cis-[TcX(CO)2(PMe2Ph)3] complexes, but when added free dimethylphenylphosphine is present only the second product is obtained. Carbon monoxide reacts with mer-[TcCl3(PMe2Ph)3] in refluxing ethanol to give [TcCl3(CO)(PMe2Ph)3] a C3 v seven-coordinate technetium(III) complex.The stereochemistry of the complexes was determined from their IR and1H NMR spectra.  相似文献   

18.
Ruthenium halides (Cl and Br) react with monotertiary arsines-Ph2RAs (R=Me, Et, Pr n ) in methoxyethanol, in the presence of aq. formaldehyde to give monocarbonyl complexes of ruthenium(II) of the type RuX2(CO) (Ph2RAs)3. Carbonylation of an ethanolic solution containing ruthenium trichloride and the arsine at room temperature yieldtrans dicarbonyl compounds of the formula RuCl2(CO)2 (Ph2RAs)2. The osmium monocarbonyls OsX2(CO) (Ph2RAs)3 (X=Cl, Br; R=Me, Et) react with NaBH4 in methanol to yield complexes of the composition OsHX(CO) (Ph2RAs)3. The ruthenium analogues RuHCl(CO) (Ph2RAs)3 have also been made. Structures have been assigned to all these compounds on the basis of IR and NMR spectral results.  相似文献   

19.
The 1H-NMR spectra of the complexes trans-[PtX2(C2H4)(Him)] (X = Cl or Br, Him = imidazole) are discussed. Variable temperature spectra are used to monitor the exchange processes which occur in acetone-d6 solution. It is found, contrary to previous work, that intermolecular exchange occurs for both the chloro- and bromo- complexes. In addition, it is also found that changing the solvent has a marked effect on the rate of exchange. Using an iterative simulation program and assuming intermolecular exchange, the rate constants for the exchange process are determined by band shape analysis, and the enthalpy and entropy of activation are calculated.  相似文献   

20.
The complexes [Ir(cod)Ln]PF6(I, L = PPh3, PMePh2; n = 2. L = PMe2Ph; n = 3) react with HX to give [IrHX(cod)L2]PF6 (II, L = PMePh2 or PMe2Ph) or [IrHX2(cod)(PPh3)] (III). The intermediates [IrX(cod)L2] have, in two cases (L = PMePh2, X = I, Br), been directly isolated from the reaction mixtures at 0°C, and are also formed from I with KX (L = PPh3, X = Cl; L = PMePh2, X = Cl, Br, I); these intermediates protonate to give II (L = PMePh2), or an equimolar mixture of III and I (L = PPh3, X = Cl). Surprisingly, I2 reacts with I in MeOH to give III (L = PPh3). The stereochemistries of II and III were determined by < 1H NMR and especially by new methods using 13C NMR spectroscopy. The complexes I exhibit a Lewis acid reactivity pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号