首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal Complexes of Biologically Important Ligands. CXVII [1] Addition of the O'Donnell Reagent [Ph2C=NCHCO2Me] to Coordinated, Unsaturated Hydrocarbons of [(C6H7)Fe(CO)3]+, [C7H9Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo), and [(C2H4)Re(CO)5]+. α-Amino Acids with Organometallic Side Chains The addition of [Ph2C=NCHCO2Me] to [(C6H7)Fe(CO)3]+, [(C7H9)Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo) and [(C2H4)Re(CO)5]+ gives derivatives of α-amino acids with organometallic side chains. The structure of [(η4-C6H7)CH(N=CPh2)CO2Me]Fe(CO)3 was determined by X-ray diffraction. From the adduct of [Ph2C=NCHCO2Me] and [(C7H7)Mo(CO)3]+ the Schiff base of a new unnatural α-amino acid, Ph2C=NCH(C7H7)CO2Me, was obtained.  相似文献   

2.
Conclusions The photochemical reactions of (CO)2(PPh3)MnC5H4Fe(CO)2C5H5 and (CO)2(PPh3)MnC5H4COFe(CO)2C5H5 with PPh3 gave the products of replacing the CO on the Fe atom by PPh3: respectively (CO)2(PPh3)MnC5H4Fe (CO)(PPh3)C5H5 and (CO)2(PPh3)MnC5H4COFe(CO)(PPh3)C5H5.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2813–2815, December, 1977.  相似文献   

3.
The reaction of 2-borolenes and 3-borolenes C4H6BR (R = Ph, Me, C6H11, OMe) with Mn, Fe, and Co carbonyls leads to dehydrogenating complexation with formation of simple, i.e. C-unsubstituted (η5-borole)metal complexes. Thus, Mn2(CO)10 gives the triple-decked complexes (μ-η5-C4H4BR)[Mn(CO)3]2 (R = Ph, OMe). By irradiation of Fe(CO)5 the half-sandwich complexes Fe(CO)35-C4H4BR) (R = Ph, Me, C6H11, OMe) are formed, whereas Co2(CO)8 yields the dinuclear complexes (μ-CO)2[Co(CO)(η5-C4H4BR)]2 (Co-Co) (R = Ph, Me). A low-temperature X-ray structure determination of Fe(CO)35-C4H4BPh) is described in detail.  相似文献   

4.
The reaction of stoichiometric MeLi with the 1:1 mixture of (?5‐C5H5)Fe(CO)2I/P(OR)3 (R = Me, Et, and Ph) at ?78°C changes the bonding mode between metal and ring from (?5‐C5H5) to (?4exo‐MeC5H5) and the oxidation state of metal from Fe(II) to Fe(O), the novel complexes (?4exo‐MeC5H5)Fe(CO)2P(C)R)3 being obtained in 45‐57% yields. The reaction of trace MeLi with the 1:1 mixture of (?5‐C5H5)Fe(CO)2I/P(OMe)3 at ?78°C results in 70% yield of the phosphonate complex (?5‐C5H5)Fe(CO)2P(O)(OMe)2 which is an Arbuzov‐like dealkylation product from the cationic intermediate [(?5‐C5H5)Fe(CO)2P(OMe)3+] and the iodide. The amines could assist the Arbuzov‐like dealkylation of [(?5‐C5H5)Fe(CO)2P(OMe)3+] [PF6?] where iron‐carbamoyl intermediates are likely involved in the case of primary amines.  相似文献   

5.
The reactions of Fe(CO)5, Fe(CO)4P(C6H5)3, M(CO)6 (M  W, Mo, Cr), and (CH3C5H4Mn(CO)3 with KH and several boron and aluminium hydrides were investigated. Iron pentacarbonyl was converted quantitatively to K+Fe(CO)4-(CHO) by hydride transfer from KBH(OCH3)3 allowing isolation of [P(C6H5)3]2-Nn+Fe(CO)4(CHO)? in 50% yield. Lower yields were obtained with LiBH(C2H5)3, and other hydride sources gave little or no formyl product. The stability of Fe(CO)4(CHO)? in THP was found to depend on the cation, decreasing in the order [P(C6H5)3]2N+ > K+ > Na+ > Li+. No formyl complexes were isolated and no spectroscopic evidence for formyl formation was observed in the reactions of the other transition metal carbonyls with several hydride sources. Fe(CO)4-P(C6H5)3 gave K2Fe(CO)4 when treated with KHB(OCH3)3. When treated with LiBH(C2H5)3, W(CO)6 gave a mixture of HW2(CO)10?and (OC)5W(COC2H5)?; the latter was methylated to give the carbene complex (OC)5WC(OCH3)C2H5.  相似文献   

6.
Complexes [RC5H4Fe(CO)2]2Sn(TePh)2 (R=H, Me) containing stable heterometallic Fe−Sn−Fe fragments with two phenyltellurium groups at the tin atom were synthesized from [RC5H4Fe(CO)2]2SnCl2 (R=H, Me) and sodium phenyltelluride and their structures were established by X-ray analysis. Their chelates with tungsten tetracarbonyl, [RC5H4Fe(CO)2]2Sn(TePh)2[W(CO)4] (R=Me, H), and complexes with two Cr(CO)5 fragments or dimeric trimethylplatinum iodide were synthesized and studied by X-ray analysis. Thermal decomposition of [RC5H4Fe(CO)2]2Sn(TePh)2 complexes and their adducts with ML fragments (ML=W(CO)4, 2 Cr(CO)5, (Me3PtI)2) into inorganic tellurides of a preset mixed-metal—chalcogenide composition was studied by differential scanning calorimetry. The temperature of complete elimination of organic fragments from methylcyclopentadienyl complexes is about 100°C lower than in the case of cyclopentadienyl analogs. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1766–1772, September, 1999.  相似文献   

7.
Reactions of reactive cyclopentadienyliron complexes C5H5Fe(CO)2I, [C5H5Fe(CO)2THF]BF4, [C5H5Fe(CO)((CH3)2S)2]BF4 and [C5H5Fe(p-(CH3)2C6H4)]PF6 with P(OR)3 as ligands (R = CH3, C2H5, i-C3H7 and C6H5) lead to the formation of the complex compounds C5H5Fe(CO)2?n(P(OR)3)nI and [C5H5Fe(CO)3?n(P(OR)3)n]X (n = 1, 2 and n = 1–3, X = BF4, PF6). Spectroscopic investigations (IR, 1H, 13C and 31P NMR) indicate an increase of electron density on the central metal with increasing substitution of CO groups by P(OR)3 ligands. The stability of the compounds increase in the same way.  相似文献   

8.
A new metal-metal bonded binuclear iron system [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2]2 (2) has been prepared by treating two equivalents of NaCp with one equivalent of ClSi(Me)2CH2CH2SiClMe2 obtaining the intermediate (C5H5)Si(Me)2CH2CH2Si(Me)2(C5H5) which then is directly allowed to react with Fe(CO)5 given 2 in 30% yield. From this cyclopentadienyldisilyl linked system three new binuclear irom complexes are formed. Treatment of 2 with Na/Hg in THF produced the dianion [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2?]2 which is quenched with CH3I giving [Me2SiCH2CH2SiMe2][η5-C4H4Fe(CO)2CH3]2 (4) in 76% yield. Complex 2 is oxidized with 1.2 equivalent of I2 to give [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2I]2 (5) in 85% yield. Photolysis of 5 (1 equiv.) and PPh3 (3 equiv.) results in the formation of the bis-substituted compound [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)(PPh3)I]2 (6). These four new binuclear iron complexes are characterized by 1H, 13C, and 31P NMR and IR spectroscopy.  相似文献   

9.
Structures of the l,3,5-Trisilacyclohexane-Iron Dicarbonyl-cyclopentadienyl Complexes and C3H6Si3Cl5Fe(CO)2πcp and C3H6Si3Cl4(Fe(CO2)πcp)2 Trisilapentachlorocyclo-hexyl-dicarbonylcyclopentadienyliron C3H6Si3Cl5Fe(CO)2πcp 1 and Trisilatetrachlorocyclohexyl-bis(dicarboncyclopentadienyliron)C3H6Si3Cl4(Fe(CO)2πcp)2 2 are 1,3,5-Trisilacyclohexane complexes substituted by dicarbonylcyclopentadienyliron at one and two silicon atoms of the six-membered ring, respectively. The crystal and molecular structures were determined from single crystals ( 1 ; space group P21/a (No. 14); a = 1100.5 pm; b = 2033.9 pm; c = 843.3pm; β = 98.58°; Z = 4; MoKα-radiation; 3142h k l; R = 0.036. 2 ; space group P1 ; (No. 2); a = 1231.1 pm; b = 1267.3 pm; c = 1045.9 pm; α = 113.23°; β = 83.93°; γ = 115.00°; Z = 2; Mokα-radiation; 4196 h k 1; R = 0.065). In both complexes the six-membered rings of the carbosilane ligands are in skew-boat conformation. The bond lengths Fe? Si are 226.4 pm and 228.1 pm, respectively. The distances Si? C and Si? Cl are 186 pm and 206 pm in 1 and 187 pm and 209 pm in 2 . Their different lengths depend on the position in the ligand system and can be explained with the concept of bond orders.  相似文献   

10.
Transition Metal Silyl Complexes, 44. — Preparation of the Binuclear Silyl Complexes (CO)3(R3Si)Fe(μ-PR′R′′)Pt(PPh3)2 by Oxidative Addition of (CO)3(R′R′′HP)Fe(H)SiR3 to (C2H4)Pt(PPh3)2 The complexes (CO)3(R′R′′HP)Fe(H)SiR3 ( 1 ) [PHR′R′′ = PHPh2, PH2Ph, PH2Cy; SiR3 = SiPh3, SiPh2Me, SiPhMe2, Si(OMe)3] react with Pt(C2H4)(PPh3)2 to give the dinuclear, silyl-substituted complexes (CO)3(R3Si)Fe(μ-PR′R′′)Pt(PPh3)2 ( 2 ) in high yields. Upon reaction of 2 (R = R′ R′′ = Ph) with CO, the PPh3 ligand at Pt being trans to the PPh2 bridge is exchanged, and (CO)3(Ph3Si)Fe(μ-PPh2)Pt(PPh3)CO ( 3 ) is formed. Complex 3 is characterized by an X-ray structure analysis. The rather short Fe — Si distance [233.9(2) pm] and the infrared spectrum of 3 indicate that the Fe — Pt bond is quite polar.  相似文献   

11.
The reactions of Fe(CO)5 or Fe3(CO)12 with NaBEt3H or KB[CH(CH3)C2H5]3H, respectively and treatment of the resulting carbonylates M2Fe(CO)4, M = Na, K with elemental selenium in appropriate ratios lead to the formation of M2[Fe2(CO)6(μ‐Se)2]. Subsequent reactions with organo halides or the complex fragment cpFe(CO)2+, cp = η5‐C5H5 afforded the selenolato complexes [Fe2(CO)6(μ‐SeR)2], R = CH2SiMe3 ( 1 ), CH2Ph ( 2 ), p‐CH2C6H4NO2 ( 3 ), o‐CH2C6H4CH2 ( 4 ) and cpFe(CO)2+ ( 5 ) in moderate to good yields. A similar reaction employing Ru3(CO)12, Se and p‐O2NC6H4CH2Br leads to the formation of the corresponding organic diselenide. The X‐ray structures of 1 , 3 , 4 and 5 were determined and revealed butterfly structures of the Fe2Se2 cores. The substituents in 1 , 3  and 5 adopt different conformations depending on their steric demand. In 4 , the conformation is fixed because of the chelate effect of the ligand. The Fe–Se bond lengths lie in the range 235 to 240 pm, with corresponding Fe–Fe bond lengths of 254 to 256 pm. The 77Se NMR data of the new complexes are discussed and compared with the corresponding data of related complexes.  相似文献   

12.
Synthesis of Carboxylate Substituted Rhenium Gold Metallatetrahedranes Re2(AuPPh3)2(μ-PCy2)(CO)71-OC(R)O) (R = H, Me, CF3, Ph, 3,4-(OMe)2C6H3) The reaction of the in situ prepared salt Li[Re2(μ-H)(μ-PCy2)(CO)7(ax-C(Ph)O)] ( 2 ) with 1,5 equivalents of monocarboxylic acid RCOOH (R = H ( 4 a ), Me ( 4 b ), CF3 ( 4 c ), Ph ( 4 d ), 3,4-(OMe)2C6H3 ( 4 e ) in tetrahydrofruan (THF) solution at 60 °C gives within 4 h under release of benzaldehyde (PhCHO) the η1-carboxylate substituted dirhenium salt Li[Re2(μ-H)(μ-PCy2)(CO)71-OC(R)O)] (R = H ( 4 a ), Me ( 4 b ), CF3 ( 4 c ), Ph ( 4 d ), 3,4-(OMe)2C6H3 ( 4 e )) in almost quantitative yield. The lower the pKa value of the respective carboxylic acid the faster the reaction proceeds. It was only in the case of CF3COOH possible to prove the formation of the hydroxycarbene complex Re2(μ-H)(μ-PCy2)(CO)7(=C(Ph)OH) ( 5 ) prior to elimination of PhCHO. The new compounds 4 a–4 e were only characterized by 31P NMR and ν(CO) IR spectroscopy as they are only stable in solution. They are converted with two equivalents of BF4AuPPh3 at 0 °C in a so-called cluster expansion reaction into the heterometallic metallatetrahedrane complexes Re2(AuPPh3)2(μ-PCy2)(CO)71-OC(R)O) (R = H ( 7 a ), Me ( 7 b ), CF3 ( 7 c ), Ph ( 7 d ), 3,4-(OMe)2C6H3 ( 7 e )) (yield 47–71% ). The expected precursor complexes of 7 a–7 e Li[Re2(AuPPh3)(μ-PCy2)(CO)71-OC(R)O] ( 8 ) were not detected by NMR and IR spectroscopy in the course of the reaction. Their existence was retrosynthetically proved by the reaction of 7 b with an excess of the chelating base TBD (1,5,7-Triazabicyclo[4.4.0]dec-5-en) forming [(TBD)xAuPPh3][Re2(AuPPh3)(μ-PCy2)(CO)71-OC(Me)O] ( 8 b ) in solution. The η1-bound carboxylate ligand in 7 a–7 e can photochemically be converted into a μ-bound ligand in Re2(AuPPh3)2(μ-PCy2)(μ-OC(R)O)(CO)6 (R = H ( 9 a ), Me ( 9 b ), CF3 ( 9 c ), Ph ( 9 d ), 3.4-(MeO)2C6H3 ( 9 e )) under release of one equivalent CO. All isolated cluster complexes were characterized and identified by the following analytical methods: elementary analysis, NMR (1H, 31P) spectroscopy, ν(CO) IR spectroscopy and in the case of 7 d and 9 b by X-ray structure analysis.  相似文献   

13.
Three new triruthenium clusters, Ru3(CO)9(μ‐arphos)AsPh3 ( 1 ), Ru3(CO)9(μ‐arphos)As(m‐C6H4Me)3 ( 2 ), and Ru3(CO)9(μ‐arphos)As(p‐C6H4Me)3 ( 3 ) were synthesized via thermal reactions of Ru3(CO)10(μ‐arphos) with different tertiary arsine ligands [AsPh3, As(m‐C6H4Me)3, As(p‐C6H4Me)3]. All these complexes were fully characterized by elemental analysis, FT‐IR, NMR spectroscopy, and single‐crystal X‐ray diffraction.  相似文献   

14.
The nitrosyl clusters PPN[YCCo3(CO)7(NO)] (Y = Me, Ph, COOH, (C5H5)Fe(C5H4)) have been prepared in high yield from the reaction of YCCo3(CO)9 with PPN(NO2) in THF, acetone or acetonitrile. Spectroscopic evidence indicates the structure of the nitrosyl anions is derived from that of YCCo3(CO)9 by the replacement of two CO ligands on one cobalt atom by a linear, terminal nitrosyl group. The nitrosyl metallates are extremely sensitive to oxidation and attempts to protonate the anions resulted in the reformation of the parent YCCo3(CO)9, molecules. The oxidative electrochemistry of the ferrocene complex, PPN[(C5H5)Fe(C5H4CCo3(CO)7(NO)] is also discussed.  相似文献   

15.
The reaction between Fe(CO)5, and group V donor ligands L, (L  PPh3, AsPh3, SbPh3, PMePh2, PMe2Ph, Asme2Ph, P(C6H11)3, P(n-Bu)3, P(i-Bu)3, P(OPh)3, P(OEt)3, P(OMe)3) in the presence of [(η5-C5Me5Fe(CO)2]2 (R  H, Me) or [(η5-C5Me5)Fe(CO)2]2 as catalyst in refluxing toluene, rapidly gives the complexes Fe(CO)4L in yields > 85%. The reaction rate is essentially independent of the nature of L for [(η5-C5Me5)Fe(CO)2]2 as catalyst. For the other catalysts, the rate is influenced predominantly by the steric properties of L. These results are interpreted in terms of the interaction between the catalyst and the ligand L to give derivatives of the type (η5-C5H4R)2Fe2,(CO)3,(L). These derivatives were also found to catalyse the reaction between Fe(CO)5, and L. The complexes [(η-C5H4R)Fe(CO)2]2 (R  H, Me) and [(η5-C5Me5)Fe(CO)2]2 also catalyse the reaction between Mn2(CO)10 and PPh3 to give Mn2(CO)8- PPh3)2 in > 80% yield.  相似文献   

16.
The electron impact induced mass spectra of [CF3SMn(CO)4]2, [CF3SeMn(CO)4]2, [CF3SFe(CO)3]2, [CF3SeFe(CO)3]2, CF3SeFe(CO)2C5H5 and CF3SCr(NO)2C5H5 are reported. These compounds exhibit weak molecular ion peaks and undergo preferential loss of CO or NO groups. The CO or NO free fragments suffer typical loss of ECF2(E = S, Se) with the simultaneous shift of F from carbon to metal. The ions [FFeC5H5]+ and [FCrC5H5]+ in the spectra of the cyclopentadienyl compounds prefer expulsion of π-cyclopentadienyls. The pyrolysis effects on the spectra of the compounds have been studied. An increase in temperature eases the expulsion of ECF2 groups from all the compounds and favors the formation of [Fe(C5H5)2]+ and [Cr(C5H5)2]+ in the cyclopentadienyl compounds.  相似文献   

17.
Heterobimetallic Phosphanido-bridged Dinuclear Complexes - Syntheses of cis-rac-[(η-C5H4R)2Zr{μ-PH(2,4,6-iPr3C6H2)}2M(CO)4] (R?Me, M?Cr, Mo; R?H, M?Mo) The zirconocene bisphosphanido complexes [(η-C5H4R)2Zr{PH(2,4,6-iPr3C6H2)}2] (R?Me, H) react with [(NBD)M(CO)4] (NBD?norbornadiene, M?Cr, Mo) to give only one diastereomer of the phosphanido-bridged heterobimetallic dinuclear complexes cis-rac-[(η-C5H4R)2Zr{μ-PH(2,4,6-iPr3C6H2)}2M(CO)4] [R?Me, M?Cr ( 1 ), Mo ( 2 ); R?H, M?Mo ( 3 )]. However, no reaction was observed between [(η-C5H5)2Zr{PH(2,4,6-tBu3 C6H2)}2] and [Pt(PPh3)4]. 1—3 were characterised spectroscopically. For 1—3 , the presence of the racemic isomer was shown by NMR spectroscopy. No reaction was observed at room temperature for 3 and CS2, (NO)BF4, Me3NO or PH(2,4,6-Me3C6H2)2. With Et2AlH or PhC?CH decomposition of 3 was observed.  相似文献   

18.
1,2-Diphosphaferrocenes as Ligands in Transition Metal Complexes. X-Ray Structure Analysis of [(η5-1,3-tBu2C5H3){η5-1,2-[Co2(CO)6]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}] Reaction of metallo-1,2-diphosphapropene (η5-tBuC5H4)(CO)2Fe? P(SiMe3)? P?C(SiMe3)2 with (Z-cyclooctene)Cr(CO)5 afforded the pentacarbonylchromium adduct of a 1,2-diphosphaferrocene [(η5-tBuC5C5H4){η5-1-[Cr(CO)5]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 1 c ). Diphosphaferrocene [(η5-tBuC5H4){η5-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 2 c ) was formed when (η5-tBuC5H4)(CO)2FeBr was treated with (Me3Si)2P? P?C(SiMe3)2 in toluene at 60°C. Photolysis of molybdenum- and tungsten hexacarbonyl in the presence of [(η5-1,3-tBu2C5H3){η5-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 2 b ) gave the pentacarbonylmetal adducts 8 (M = Mo) and 9 (M = W), respectively. A corresponding manganese derivative resulted from the photochemical reaction of 2 b and (MeC5H4)Mn(CO)3. Treatment of 2 b with Co2(CO)8 yielded trinuclear [(η5-1,3-tBu2C5H3){η5-1,2-[Co2(CO)6]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 11 ). Constitution and configuration of compounds 1 c, 2 c, 8 – 11 were determined by elemental analyses and spectra (IR, 1H-, 13C-, 31P-NMR, MS). In addition the molecular structure of 11 was established by single crystal X-ray analysis.  相似文献   

19.
C5H5Co(PMe3)CS2 (IV) is formed in practically quantitative yield in the reaction of C5H5Co(PMe3)2 (I) or the heterobinuclear complex C5H5(PMe3)Co(CO)2Mn(CO)C5H4Me (III) with CS2. The crystal structure shows that the carbon disulfide bonds as a dihapto ligand through the carbon and one sulfur atom (S(2)) (CoC = 1.89, CoS(2) = 2.24 Å, S(2)CS(1) = 141.2°). The two CS bond lengths in IV (CS(2) = 1.68, CS(1) =1.60 Å) are greater than in free CS2 (1.554Å) which is in agreement with the strong π-acceptor character of h2-CS2 as shown in the spectroscopic data. IV reacts with Cr(CO)5THF and C5H5Mn(CO)2THF to give the complexes C5H5(PMe3)Co(SCS)Cr(CO)5 (V) and C5H5(PMe3)Co(SCS)Mn(CO)2C5H5 (VI) respectively, in which the sulfur atom S(1) that is not bound to cobalt coordinates to the 16-electron fragments Cr(CO)5 and Mn(CO)2C5H5. The spectroscopic data of IV, V and VI are discussed.  相似文献   

20.
Alkylation of [Fe(S2C6H4)2(CO)2]2? with S(C2H4Br)2 yields loosing one CO ligand the monocarbonyl complex [Fe(dpttd)CO], where dpttd represents the dianion of the novel pentadentate thioether-thiol ligand dpttd-H2 = 2,3,11,12-dibenzo-1,4,7,10,13-pentathiatridecan. The extremely stable [Fe(dpttd)CO] forms several coordination isomers with different ν(CO) frequencies. Dependent on the reaction conditions, the thermal or photochemical reaction of [Fe(dpttd)CO] with N2H5OH yields [Fe(dpttd)(N2H4)2–3] or [Fe(dpttd)(N2H4)]·THF; the latter can also be obtained from [Fe(dpttd){P(OPh)3}] and N2H4 in THF at 5–10°C. The CO ligand of [Fe(dpttd)CO] can be substituted thermally by PMe3, PEt3, PMePh2 or P(OPh)3 yielding the corresponding phosphine and phosphite complexes, but CO substitution by PPh3 does not take place. Dissolution of [Fe(dpttd)(N2H4)2–3] in dimethyl sulfoxide (DMSO) leads to [Fe(dpptd)(DMSO)], which yields [Fe(dpttd)(DMF)] at 80°C in dimethyl formamide (DMF). [Fe(dpttd)CO] is stable to air in the solid state as well as in solution, however, it decomposes on oxidation by H2O2, I2, Br2 or N-bromosuccinimide loosing CO and with destruction of the sulfur ligand. All complexes are not very soluble or hardly soluble in all common solvents; this is also found for methyl-substituted [Fe(dpttd)CO], which is obtained from [Fe(S2C6Me4)2(CO)2]2? and S(C2H4Br)2. Oxidation or thermal decomposition of the N2H4 complexes yields [Fe(dpttd)]x, from which [Fe(dpttd)CO] regenerates rapidly on treatment with CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号