首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the process of self-association, reaching a thermodynamic equilibrium state in dilute solution is usually very fast, taking at most seconds for small organic (such as surfactants) solutions and hours for polymer solutions. It is very rare that days are necessary for soluble small organic molecules to reach thermodynamic stability in dilute solutions. This work reports such an unusually slow association of two polymerizable organic molecules, HOOC(CH2)3CCCC(CH2)3COOH and (EtO)3Si(CH2)3NH2, in their common solvent. The self-organization process of above complexes spanned several minutes to several days, depending on their concentrations. The morphologies of resultant aggregates, ranging from vesicles to solid spheres and to hollow spheres, were also tunable by varying the molar ratios of two precursors. Enriched functional COOH/NH2 groups on the aggregate surface can attach various antibodies, which endow the nanaoparticles with great potential applications as targeted drug-delivery vehicles. In addition, as-synthesized hybrid aggregates could be further stabilized by either addition reaction of diacetylenic acid or hydrolysis and condensation reactions of 3-aminopropyltriethoxysilane. In particular, the derived polydiacetylenic aggregates demonstrate a thermochromatic property and may be applied as sensing materials. Those novel phenomena, along with the simplicity in the preparation of aggregates, make the system promising in addressing related theoretical problems and practical applications.  相似文献   

2.
郭明雨  江明 《化学进展》2007,19(4):557-566
本文综述了基于环糊精包结络合作用的大分子自组装的研究进展,包括:(1) 线型、梳型、多臂星型或超支化聚合物与环糊精或其二聚体自组装形成多聚轮烷(分子项链)、多聚准轮烷、双多聚(准)轮烷、分子管、双分子管、超分子凝胶及其应用;(2)桥联环糊精与桥联客体分子自组装制备线型或超支化超分子聚合物;(3)温度、pH值、光及客体分子刺激响应智能体系; (4) 通过亲水性的环糊精线型均聚物与含金刚烷的疏水性聚合物之间的包结络合作用来制备高分子胶束及其空心球等。  相似文献   

3.
Previously, we have found that an achiral barbituric acid (BA) derivative, 5-(4-(N-methyl-N-hexadecylaminobenzylidene))-2,4,6-(1H,3H)-pyrimidinetrione (BAC16), could form molecular assemblies showing supramolecular chirality through the organization at the air/water interface. To acquire more knowledge of the formation mechanism of such supramolecular assemblies, some achiral molecules, such as stearic acid (SA), octadecylamine (ODA), and an analogue of BA without an alkyl chain, were mixed into the BAC16 system. The effects of these matrix molecules on the supramolecular chirality and surface morphologies of Lanmuir-Blodgett (LB) films were investigated. It was observed that, at a low molar ratio of the matrix molecules (below 10%), the chirality of the BAC16 assemblies could be maintained with only a reduction in the intensity. When the matrix fraction was increased, the supramolecular chirality of the mixed films disappeared. The addition of the matrix molecules can greatly change the surface morphologies of the mixed films. When SA was mixed with BAC16, the spiral nanofibers of BAC16 were changed to long nanofibers. When ODA was mixed, the hydrolytic cleavage reaction of BAC16 took place at the air/water interface and disordered spirals were obtained. When the analogous BA derivate without an alkyl chain was mixed, the phase-separating morphology was observed. These changes in the chirality and surface morphologies indicated firmly that the supramolecular chirality of BAC16 films were formed due to the cooperative arrangement of the molecules. A certain amount of matrix molecules will destroy the cooperative arrangement and thus the chirality.  相似文献   

4.
Despite the remarkable progress made in controllable self‐assembly of stimuli‐responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self‐assembly of SSPs. Herein, the design and synthesis of a dual‐stimuli thermo‐ and photoresponsive Y‐shaped supramolecular polymer (SSP2) with two adjacent β‐cyclodextrin/azobenzene (β‐CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β‐CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self‐assemblies with a higher binding‐site distribution density; exhibits a flower‐like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug‐release behavior than those observed with SSP1 self‐assemblies. The host–guest binding‐site‐tunable self‐assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self‐assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self‐assemblies.  相似文献   

5.
We present investigations on noncovalent bonding and supramolecular self-assembly of two related molecular building blocks at a noble metal surface: 4-[trans-2-(pyrid-4-yl-vinyl)]benzoic acid (PVBA) and 4-[(pyrid-4-yl-ethynyl)]benzoic acid (PEBA). These rigid, rodlike molecules comprising the same complementary moieties for hydrogen bond formation are comparable in shape and size. For PVBA, the ethenylene moiety accounts for two-dimensional (2-D) chirality upon confinement to a surface; PEBA is linear and thus 2-D achiral. Molecular films were deposited on a Ag(111) surface by organic molecular beam epitaxy and characterized by scanning tunneling microscopy. At low temperatures (around 150 K), both species form irregular networks of flat lying molecules linked via their endgroups in a diffusion-limited aggregation process. In the absence of kinetic limitations (adsorption or annealing at room temperature), hydrogen-bonded supramolecular assemblies form which are markedly different. With PVBA, enantiomorphic twin chains in two mirror-symmetric species running along a high-symmetry direction of the substrate lattice form by diastereoselective self-assembly of one enantiomer. The chirality signature is strictly correlated between neighboring twin chains. Enantiopure one-dimensional (1-D) supramolecular nanogratings with tunable periodicity evolve at intermediate coverages, reflecting chiral resolution in micrometer domains. In contrast, PEBA assembles in 2-D hydrogen-bonded islands, which are enantiomorphic because of the orientation of the supramolecular arrangements along low-symmetry directions of the substrate. Thus, for PVBA, chiral molecules form 1-D enantiomorphic supramolecular structures because of mesoscopic resolution of a 2-D chiral species, whereas with PEBA, the packing of an achiral species causes 2-D enantiomorphic arrangements. Model simulations of supramolecular ordering provide a deeper understanding of the stability of these systems.  相似文献   

6.
The construction of stimuli‐responsive materials by using naturally occurring molecules as building blocks has received increasing attention owing to their bioavailability, biocompatibility, and biodegradability. Herein, a symmetrical azobenzene‐functionalized natural glycyrrhizic acid (trans‐ GAG ) was synthesized and could form stable supramolecular gels in DMSO/H2O and MeOH/H2O. Owing to transcis isomerization, this gel exhibited typical light‐responsive behavior that led to a reversible gel–sol transition accompanied by a variation in morphology and rheology. Additionally, this trans‐ GAG gel displayed a distinct injectable self‐healing property and outstanding biocompatibility. This work provides a simple yet rational strategy to fabricate stimuli‐responsive materials from naturally occurring, eco‐friendly molecules.  相似文献   

7.
《中国化学快报》2021,32(12):3998-4001
By introducing a host molecule cucurbit[8]uril (CB[8]) into a charge transfer system containing an amphiphile 1-[11-(naphthalene-2-ylmethoxy)-11-oxoundecyl]pyridinium (NP) and an electron-deficient molecule methyl viologen (MV), a novel and anisotropic ternary building block was constructed by host-guest interactions, thereby leading to the morphology transformation of the final assemblies from thin-films (NP/MV complexes) into diamond-like structures (NP/MV/CB[8] complexes). These intriguing assemblies were firstly discovered and were similar with the shape of well-known metal organic frameworks (MOFs), but just comprised three small organic molecules without metal ions. This finding can enrich the shape of current supramolecular assemblies and thus contributing to more potential applications in material science.  相似文献   

8.
Melamine-linked perylene bisimide dyes (MPBIs) bearing an ethylene or trimethylene group as linker moieties were synthesized, and their self-aggregation and coaggregation with cyanurates through complementary triple hydrogen bonds have been investigated. UV/vis studies revealed that both the MPBIs self-assemble in nonpolar organic solvent through pi-pi stacking interaction between perylene cores, giving self-aggregates with nearly identical thermal stabilities. Upon addition of 1 equiv of cyanurate components, however, the stabilities of the resulting aggregates were dramatically changed between the two systems, suggesting the formation of different types of hydrogen-bonded supramolecular species. Dynamic light scattering and atomic force microscopic studies revealed that the system featuring ethylene linker moieties generates a discrete dimer of MPBI supported by two cyanurate molecules, whereas the system featuring trimethylene linker moieties affords extended supramolecular polymers hierarchically organizing into nanoscopic fibers. These results demonstrate that it is possible to obtain distinct supramolecular species by just changing the number of carbon atoms at the linker moieties of MPBI components. The present strategy for the fabrication of discrete or polymeric supramolecular assemblies should be applicable to other functional pi-conjugated molecules.  相似文献   

9.
Recent advances in host–guest chemistry have significantly influenced the construction of supramolecular soft biomaterials. The highly selective and non‐covalent interactions provide vast possibilities of manipulating supramolecular self‐assemblies at the molecular level, allowing a rational design to control the sizes and morphologies of the resultant objects as carrier vehicles in a delivery system. In this Focus Review, the most recent developments of supramolecular self‐assemblies through host–guest inclusion, including nanoparticles, micelles, vesicles, hydrogels, and various stimuli‐responsive morphology transition materials are presented. These sophisticated materials with diverse functions, oriented towards therapeutic agent delivery, are further summarized into several active domains in the areas of drug delivery, gene delivery, co‐delivery and site‐specific targeting deliveries. Finally, the possible strategies for future design of multifunctional delivery carriers by combining host–guest chemistry with biological interface science are proposed.  相似文献   

10.
王宗元  王嘉骏  孙泽宇  项文龙  沈辰阳  芮宁  丁明珠  元英进  崔宏刚  刘昌俊 《催化学报》2021,42(3):376-387,中插6-中插10
近年来,超分子组装在催化、制药、传感器、提纯、组织工程等领域获得广泛应用.为了实现超分子结构功能化,经常会将金属纳米颗粒或者金属活性位引入或共组装至有机超分子骨架中,由此获得金属化的纳米材料.例如,金属纳米颗粒修饰的多肽纤维、金属聚合物、金属负载的水凝胶和气凝胶.常见的金属化策略包括自组织、金属有机配位络合、聚合和电子...  相似文献   

11.
Hierarchical supramolecular chiral liquid-crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization-induced chiral self-assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene-containing block copolymer (Azo-BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo-BCP assemblies. The supramolecular chirality of Azo-BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

12.
13.
Most attempts to synthesize supramolecular nanosystems are limited to a single mechanism, often resulting in the formation of nanomaterials that lack diversity in properties. Herein, hierarchical assemblies with appropriate variety are fabricated in bulk via a superstructure-induced organic–inorganic hybrid strategy. The dynamic balance between substructures and superstructures is managed using covalent organic frameworks (COFs) and metal–organic frameworks (MOFs) as dual building blocks to regulate the performances of hierarchical assemblies. Significantly, the superstructures resulting from the controlled cascade between COFs and MOFs create highly active photocatalytic systems through multiple topologies. Our designed tandem photocatalysis can precisely and efficiently regulate the conversion rates of bioactive molecules (benzo[d]imidazoles) through competing redox pathways. Furthermore, benzo[d]imidazoles catalyzed by such supramolecular nanosystems can be isolated in yields ranging from 70 % to 93 % within tens of minutes. The multilayered structural states within the supramolecular systems demonstrate the importance of hierarchical assemblies in facilitating photocatalytic propagation and expanding the structural repertoire of supramolecular hybrids.  相似文献   

14.
The development of synthetic helical structures undergoing stimuli‐responsive chirality transformations is important for an understanding of the role of chirality in natural systems. However, controlling supramolecular chirality in entropically driven assemblies in aqueous media is challenging. To develop stimuli‐responsive assemblies, we designed and synthesized pyrazine derivatives with l ‐alanine groups as chiral building blocks. These systems undergo self‐assembly in aqueous media to generate helical fibers and the embedded alanine groups transfer their chirality to the assembled structures. Furthermore, these helical fibers undergo a Ni2+‐induced chirality transformation. The study demonstrates the role of intermolecular hydrogen bonding, π–π stacking, and the hydrophobic effect in the Ni2+‐mediated transition of helical fibers to supercoiled helical ensembles which mimic the formation of superstructures in biopolymers.  相似文献   

15.
Manipulating the self-assembly pathway is essentially important in the supramolecular synthesis of organic nano- and microarchitectures. Herein, we design a series of photoisomerizable chiral molecules, and realize precise control over pathway complexity with external light stimuli. The hidden single-handed microcoils, rather than the straight microribbons through spontaneous assembly, are obtained through a kinetically controlled pathway. The competition between molecular interactions in metastable photostationary intermediates gives rise to a variety of molecular packing and thereby the possibility of chirality transfer from molecules to supramolecular assemblies.  相似文献   

16.
Hierarchical supramolecular chiral liquid‐crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization‐induced chiral self‐assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene‐containing block copolymer (Azo‐BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo‐BCP assemblies. The supramolecular chirality of Azo‐BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

17.
Polymerization-induced chiral self-assembly(PICSA)is an efficient strategy that not only allows the construction of the supramolecular chiral assemblies in a controlled manner but also can regulate the morphology in situ.Herein,a series of azobenzene-containing block copolymer(Azo-BCP)assemblies with tunable morphologies and supramolecular chirality were obtained through the PICSA strategy.The supramolecular chirality of Azo-BCP assemblies could be regulated by carbon dioxide(CO2)stimulus,and completely recovered by bubbling with Ar.A reversible morphology transformation and chiroptical switching process could also be achieved by the alternative 365 nm UV light irradiation and heatingcooling treatment.Moreover,the supramolecular chirality is thermo-responsive and a reversible chiral-achiral switching was successfully realized,which can be reversibly repeated for at least five times.This work provides a feasible strategy for constructing triple stimuli-responsive supramolecular chiral nano-objects in situ.  相似文献   

18.
We report the assembly of supramolecular boxes and coordination polymers based on a rigid bis‐zinc(II)‐salphen complex and various ditopic nitrogen ligands. The use of the bis‐zinc(II)‐salphen building block in combination with small ditopic nitrogen ligands gave organic coordination polymers both in solution as well as in the solid state. Molecular modeling shows that supramolecular boxes with small internal cavities can be formed. However, the inability to accommodate solvent molecules (such as toluene) in these cavities explains why coordination polymers are prevailing over well‐defined boxes, as it would lead to an energetically unfavorable vacuum. In contrast, for relatively longer ditopic nitrogen ligands, we observed the selective formation of supramolecular box assemblies in all cases studied. The approach can be easily extended to chiral analogues by using chiral ditopic nitrogen ligands.  相似文献   

19.
Unprecedented supramolecular stacks of highly reduced geodesic pi-systems were prepared by the reduction of the derivatized fullerenes Me(5)C(60)H and Ph(5)C(60)H and corannulene with lithium metal (R(5)C(60)(5)(-)/Cor(4)(-)/9Li(+)). The host--guest assemblies form because of the enhanced electrostatic interactions between the lithium cations and the anionic moieties, in addition to the structural compatibility between the curved hydrocarbons. The high stability of these new supramolecular assemblies (heterodimers) enables the introduction of another organization motif to the system. This is achieved by using tethered corannulenes as host molecules, which leads to the formation of tethered bis-heterodimers ((Me(5)C(60)(5)(-)/Cor(4)(-))(2)(CH(2))(8)/18Li(+)).  相似文献   

20.
Based on the recent near‐atomic structures of the PYRIN domain of ASC in the protein filament of inflammasomes and the observation that the active form of vitamin B6 (pyridoxal phosphate, P5P) modulates the self‐assembly of ASC, we rationally designed an N‐terminal capped nonapeptide (Nap‐FFKKFKLKL, 1 ) to form supramolecular nanofibers consisting of α‐helix. The addition of P5P to the solution of 1 results in a hydrogel almost instantly (about 4 seconds). Several other endogenous small molecules (for example, pyridoxal, folinic acid, ATP, and AMP) also convert the solution of 1 into a hydrogel. As the demonstration of correlating assemblies of peptides and the relevant protein epitopes, this work illustrates a bioinspired approach to develop supramolecular structures modulated by endogenous small molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号