首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is widely believed that when a molecule with thiol (S-H) end groups bridges a pair of gold electrodes, the S atoms bond to the gold and the thiol H atoms detach from the molecule. However, little is known regarding the details of this process, its time scale, and whether molecules with and without thiol hydrogen atoms can coexist in molecular junctions. Here, we explore theoretically how inelastic tunneling spectroscopy (IETS) can shed light on these issues. We present calculations of the geometries, low bias conductances, and IETS of propanedithiol and propanedithiolate molecular junctions with gold electrodes. We show that IETS can distinguish between junctions with molecules having no, one, or two thiol hydrogen atoms. We find that in most cases, the single-molecule junctions in the IETS experiment of Hihath et al. [Nano Lett. 8, 1673 (2008)] had no thiol H atoms, but that a molecule with a single thiol H atom may have bridged their junction occasionally. We also consider the evolution of the IETS spectrum as a gold STM tip approaches the intact S-H group at the end of a molecule bound at its other end to a second electrode. We predict the frequency of a vibrational mode of the thiol H atom to increase by a factor ~2 as the gap between the tip and molecule narrows. Therefore, IETS should be able to track the approach of the tip towards the thiol group of the molecule and detect the detachment of the thiol H atom from the molecule when it occurs.  相似文献   

2.
Thiol-tethered Ru(II) terpyridine complexes were synthesized for a voltage-driven molecular switch and used to understand the switch-on mechanism of the molecular switches of single metal complexes in the solid-state molecular junction in a vacuum. Molecularly resolved scanning tunneling microscopy (STM) images revealed well-defined single Ru(II) complexes isolated in the highly ordered dielectric monolayer. When a negative sample-bias was applied, the threshold voltage to the high conductance state in the molecular junctions of the Ru(II) complex was consistent with the electronic energy gap between the Fermi level of the gold substrate and the lowest ligand-centered redox state of the metal complex molecule. As an active redox center leading to conductance switching in the molecule, the lowest ligand-centered redox state of Ru(II) complexes was suggested to trap an electron injected from the gold substrate. Our suggestions for a single-molecule switch-on mechanism in the solid state can provide guidance in a design that improves the charge-trapping efficiency of the ligands with different metal substrates.  相似文献   

3.
Herein trimethylsilane (TMS) is demonstrated to be an efficient binding group suitable for construction of metal-molecule-metal (M-mol-M') junctions, in which one of the metal contacts is an atomically flat gold surface and the other a scanning tunnelling microscopy (STM) tip. The molecular component of the M-mol-M' devices is an oligomeric phenylene ethynylene (OPE) derivative Me(3)Si C≡C{C(6)H(4)C≡C}(2)C(6)H(4)NH(2), featuring both Me(3)SiC≡C and NH(2) metal contacting groups. This compound can be assembled into Langmuir-Blodgett (LB) films on Au--substrates by surface binding through the amine groups. Alternatively, low coverage (sub-monolayer) films are formed by adsorption from solution. In the case of condensed monolayers top electrical contacts are formed to STM tips through the TMS end group. In low coverage films, single molecular bridges can be formed between the gold surface and a gold STM tip. The similarity in the I-V response of a one-layer LB film and the single molecule conductance experiments reveals several points of critical importance to the design of molecular components for use in the construction of M-mol-M' junctions. Firstly, the presence of neighbouring π systems does not have a significant effect on the conductance of the M-mol-M' junction. Secondly, in the STM configuration, intermolecular electron hopping does not significantly enhance the junction transport characteristics. Thirdly, the symmetric behaviour of the I-V curves obtained, despite the different metal-molecule contacts, indicates that the molecule is simply an amphiphilic electron-donating wire and not a molecular diode with strong rectifying characteristics. Finally, the conductance values obtained from the amine/TMS-contacted OPE described here are of the same order of magnitude as thiol anchored OPEs, making them attractive alternatives to the more conventionally used thiol-contacting chemistry for OPE molecular wires.  相似文献   

4.
Understanding the effects of intermolecular interactions on the charge-transport properties of metal/molecule/metal junctions is an important step towards using individual molecules as building blocks for electronic devices. This work reports a systematic electron-transport investigation on a series of "core-shell"-structured oligo(phenylene ethynylene) (Gn-OPE) molecular wires. By using dendrimers of different generations as insulating "shells", the intermolecular π-π interactions between the OPE "cores" can be precisely controlled in single-component monolayers. Three techniques are used to evaluate the electron-transport properties of the Au/Gn-OPE/Au molecular junctions, including crossed-wire junction, scanning tunneling spectroscopy (STS), and scanning tunneling microscope (STM) break-junction techniques. The STM break-junction measurement reveals that the electron-transport pathways are strongly affected by the size of the side groups. When the side groups are small, electron transport could occur through three pathways, including through single-molecule junctions, double-molecule junctions, and molecular bridges between adjacent molecules formed by aromatic π-π coupling. The dendrimer shells effectively prohibit the π-π coupling effect, but at the same time, very large dendrimer side groups may hinder the formation of Au-S bonds. A first-generation dendrimer acts as an optimal shell that only allows electron transport through the single-molecule junction pathway, and forbids the other undesired pathways. It is demonstrated that the dendrimer-based core-shell strategy allows the single-molecule conductance to be probed in a homogenous monolayer without the influence of intermolecular π-π interactions.  相似文献   

5.
The effect of electrochemical reduction on the single-molecule conductance of fullerene C60 derivatives was studied by scanning tunneling microscopy. Three types of C60 derivatives were synthesized, a monoadduct having an amino-terminated linker and two bisadducts having two linkers at different positions (trans2 and trans3). Each C60 derivative was immobilized on a gold surface by an amino-gold linkage, confirmed by infrared reflection-absorption spectroscopy. The immobilized C60 derivatives showed reversible and multiple reduction peaks in the cyclic voltammogram in dimethylformamide (DMF) at almost the same potentials as those in solution, showing the redox properties of the molecules are intact on gold. Single-molecule conductances of the bisadducts, which can span between a scanning tunneling microscopy (STM) tip made of gold and substrate with the two linkers, were determined by the STM break-junction measurements in water and DMF. The conductances were 6.1+/-4.5 nS in water and 4.9+/-1.7 nS in DMF for the trans2 bisadduct and 8.4+/-3.4 nS in water and 7.9 nS+/-2.8 in DMF for the trans3 bisadduct. By using a potential-controlled STM setup, the tunneling current through a single molecule was recorded with sweeping the potentials of the tip and substrate. The trans2 bisadduct showed significant changes in the current when the reductions of the C60 moiety occur. Some current curves showed multiple peaks, and the other curves showed stepwise increase and decrease at the C60 reduction and subsequent reoxidation. Statistical analysis afforded stepwise switching of the conductance as the average behavior and suggested that the electron tunneling through the C60 derivative is enhanced as it accepts electrons.  相似文献   

6.
Understanding electron transport across π-π-stacked systems will help to answer fundamental questions about biochemical redox processes and benefit the design of new materials and molecular devices. Herein we employed the STM break-junction technique to measure the single-molecule conductance of multiple π-π-stacked aromatic rings. We studied electron transport through up to four stacked benzene rings held together in an eclipsed fashion via a paracyclophane scaffold. We found that the strained hydrocarbons studied herein couple directly to gold electrodes during the measurements; hence, we did not require any heteroatom binding groups as electrical contacts. Density functional theory-based calculations suggest that the gold atoms of the electrodes bind to two neighboring carbon atoms of the outermost cyclophane benzene rings in η(2) fashion. Our measurements show an exponential decay of the conductance with an increasing number of stacked benzene rings, indicating a nonresonant tunneling mechanism. Furthermore, STM tip-substrate displacement data provide additional evidence that the electrodes bind to the outermost benzene rings of the π-π-stacked molecular wires.  相似文献   

7.
Mapping of structure and function of proteins adsorbed on solid surfaces is important in many contexts. Electrochemical techniques based on single-crystal metal surfaces and in situ scanning probe microscopies (SPM) have recently opened new perspectives for mapping at the single-molecule level. De novo design of model proteins has evolved in parallel and holds promise for test and control of protein folding and for new tailored protein structural motifs. These two strategies are combined in the present report.We present a synthetic scheme for a new 4-alpha-helix bundle carboprotein built on a galactopyranoside derivative with a thiol anchor aglycon suitable for surface immobilization on gold. The galactopyranoside with thiol anchor and the thiol anchor alone were prepared for comparison. Voltammetry of the three molecules on Au(111) showed reductive desorption peaks caused by monolayer adsorption via thiolate-Au bonding. In situ STM of the thiol anchor disclosed an ordered adlayer with clear domains and molecular features. This holds promise, broadly for single-molecule voltammetry and the SPM and scanning tunnelling microscopy (STM) of natural and synthetic proteins.  相似文献   

8.
As a fundamental and frequently referred concept in modern chemistry, the molecular orbital plays a vital role in the science of single molecules, which has become an active field in recent years. For the study of single molecules, scanning tunneling microscopy (STM) has been proven to be a powerful scientific technique. Utilizing specific distribution of the molecular orbitals at spatial, energy, and spin scales, STM can explore many properties of single molecule systems, such as geometrical configuration, electronic structure, magnetic polarization, and so on. Various interactions between the substrate and adsorbed molecules are also understood in terms of the molecular orbitals. Molecular engineering methods, such as mode-selective chemistry based on the molecular orbitals, and resonance tunneling between the molecular orbitals of the molecular sample and STM tip, have stimulated new advances of single molecule science.  相似文献   

9.
电化学门控已成为一种可行且高效调节单分子电导的方法.在本研究中,我们证实了具有两个平行苯环的单分子电路中电子传输可以通过电化学门控控制.首先,我们利用STM-BJ技术以金为电极构筑了具有两条平行路径的单分子结.与单条路径的单分子结相比,两条路径的分子结由于具有增强性量子干涉效应,具有2.82倍的电导值.进一步地,我们利...  相似文献   

10.
Mapping and control of proteins and oligonucleotides on metallic and nonmetallic surfaces are important in many respects. Electrochemical techniques based on single-crystal electrodes and scanning probe microscopies directly in aqueous solution (in situ SPM) have recently opened perspectives for such mapping at a resolution that approaches the single-molecule level. De novo design of model proteins has evolved in parallel and holds promise for testing and controlling protein folding and for new tailored protein structural motifs. In this report we combine these two strategies. We present a scheme for the synthesis of a new 4-alpha-helix bundle carboprotein built on a galactopyranoside derivative with a thiol anchor aglycon suitable for surface immobilization on gold. The carboprotein with thiol anchor in monomeric and dimeric (disulfide) form, the thiol anchor alone, and a sulfur-free 4-alpha-helix bundle carboprotein without thiol anchor have been prepared and investigated for comparison. Cyclic and differential pulse voltammetry (DPV) of the proteins show desorption peaks around -750 mV (SCE), whereas the thiol anchor desorption peak is at -685 mV. The peaks are by far the highest for thiol monomeric 4-alpha-helix bundle carboprotein and the thiol anchor. This pattern is supported by capacitance data. The DPV and capacitance data for the thiolated 4-alpha-helix bundle carboproteins and the thiol anchor hold a strong Faradaic reductive desorption component as supported by X-ray photoelectron spectroscopy. The desorption peak of the sulfur-free 4-alpha-helix bundle carboprotein, however, also points to a capacitive component. In situ scanning tunneling microscopy (in situ STM) of the thiol anchor discloses an adlayer with small domains and single molecules ordered in pin-striped supramolecular structures. In situ STM of thiolated 4-alpha-helix bundle carboprotein monomer shows a dense monolayer in a broad potential range on the positive side of the desorption potential. The coverage decreases close to this potential and single-molecule structures become apparent. The in situ STM contrast is also strengthened, indicative of a new redox-based tunneling mechanism. The data overall suggest that single-molecule mapping of natural and synthetic proteins on well-characterized surfaces by electrochemistry and in situ STM is within reach.  相似文献   

11.
An oligo(p-phenylenevinylene) (OPV)-substituted hexaarylbenzene has been synthesized and fully characterized. Recycling gel permeation chromatography appeared to be a powerful technique to obtain the OPV molecules in a very pure form. X-ray analysis and polarization optical microscopy revealed that the OPV molecule is plastic crystalline at room temperature with an ordered columnar superstructure. In apolar solvents, the molecules self-assemble via a highly cooperative fashion into right-handed chiral superstructures, which are stable even at high temperatures and low concentration. Atomic force microscopy revealed right-handed fibers with a diameter of 6 nm, indicating pi-stacked aggregates; on a silicon oxide substrate, supercoiled chiral structures were observed. STM studies on a liquid-solid interface showed that the star-shaped OPV molecule forms an organized monolayer having a chiral hexagonal lattice.  相似文献   

12.
We used electrochemical scanning tunneling microscopy (STM) and spectroscopy (STS) to elucidate the mechanism of electron transport through individual pyridyl-based Os complexes. Our tunneling data obtained by two-dimensional electrochemical STS and STM imaging lead us to the conclusion that electron transport occurs by thermally activated hopping. The conductance enhancement around the redox potential of the complex, which is reminiscent of switching and transistor characterics in electronics, is reflected both in the STM imaging contrast and directly in the tunneling current. The latter shows a biphasic distance dependence, in line with a two-step electron hopping process. Under conditions where the substrate/molecule electron transfer (ET) step is dominant in determining the overall tunneling current, we determined the conductance of an individual Os complex to be 9 nS (Vbias = 0.1 V). We use theoretical approaches to connect the single-molecule conductance with electrochemical kinetics data obtained from monolayer experiments. While the latter leave some controversy regarding the degree of electronic coupling, our results suggest that electron transport occurs in the adiabatic limit of strong electronic coupling. Remarkably, and in contrast to established ET theory, the redox-mediated tunneling current remains strongly distance dependent due to the electronic coupling, even in the adiabatic limit. We exploit this feature and apply it to electrochemical single-molecule conductance data. In this way, we attempt to paint a unified picture of electrochemical charge transport at the single-molecule and monolayer levels.  相似文献   

13.
Most studies in molecular electronics focus on altering the molecular wire backbone to tune the electrical properties of the whole junction. However, it is often overlooked that the chemical structure of the groups anchoring the molecule to the metallic electrodes influences the electronic structure of the whole system and, therefore, its conductance. We synthesised electron-accepting dithienophosphole oxide derivatives and fabricated their single-molecule junctions. We found that the anchor group has a dramatic effect on charge-transport efficiency: in our case, electron-deficient 4-pyridyl contacts suppress conductance, while electron-rich 4-thioanisole termini promote efficient transport. Our calculations show that this is due to minute changes in charge distribution, probed at the electrode interface. Our findings provide a framework for efficient molecular junction design, especially valuable for compounds with strong electron withdrawing/donating backbones.  相似文献   

14.
We present a model molecular system with an unintuitive transport-extension behavior in which the tunneling current increases with forced molecular elongation. The molecule consists of two complementary aromatic units (1,4-anthracenedione and 1,4-anthracenediol) hinged via two ether chains and attached to gold electrodes through thiol-terminated alkenes. The transport properties of the molecule as it is mechanically elongated in a single-molecule pulling setting are computationally investigated using a combination of equilibrium molecular dynamics simulations of the pulling with gDFTB computations of the transport properties in the Landauer limit. Contrary to the usual exponential decay of tunneling currents with increasing molecular length, the simulations indicate that upon elongation electronic transport along the molecule increases 10-fold. The structural origin of this inverted trend in the transport is elucidated via a local current analysis that reveals the dual role played by H-bonds in both stabilizing π-stacking for selected extensions and introducing additional electronic couplings between the complementary aromatic rings that also enhance tunneling currents across the molecule. The simulations illustrate an inverted electromechanical single-molecule switch that is based on a novel class of transport-extension behavior that can be achieved via mechanical manipulation and highlight the remarkable sensitivity of conductance measurements to the molecular conformation.  相似文献   

15.
Direct monitoring of single-molecule reactions has recently become a promising means of mechanistic investigation. However, the resolution of reaction pathways from single-molecule experiments remains elusive, primarily because of interference from extraneous processes such as bulk diffusion. Herein, we report a single-molecule kinetic investigation of DNA hybridization on a metal surface, as an example of a bimolecular association reaction. The tip of the scanning tunneling microscope (STM) was functionalized with single-stranded DNA (ssDNA), and hybridization with its complementary strand on an Au(111) surface was detected by the increase in the electrical conductance associated with the electron transport through the resulting DNA duplex. Kinetic analyses of the conductance changes successfully resolved the elementary processes, which involve not only the ssDNA strands and their duplex but also partially hybridized intermediate strands, and we found an increase in the hybridization efficiency with increasing the concentration of DNA in contrast to the knowledge obtained previously by conventional ensemble measurements. The rate constants derived from our single-molecule studies provide a rational explanation of these findings, such as the suppression of DNA melting on surfaces with higher DNA coverage. The present methodology, which relies on intermolecular conductance measurements, can be extended to a range of single-molecule reactions and to the exploration of novel chemical syntheses.

Hybridization of a single DNA molecule on a surface was investigated by electrical conductance measurements. The hybridization efficiency increases with increasing the DNA concentration, in contrast to preceding studies with ensemble studies.  相似文献   

16.
The symmetry of a molecule junction has been shown to play a significant role in determining the conductance of the molecule, but the details of how conductance changes with symmetry have heretofore been unknown. Herein, we investigate a naphthalenedithiol single-molecule system in which sulfur atoms from the molecule are anchored to two facing gold electrodes. In the studied system, the highest single-molecule conductance, for a molecule junction of 1,4-symmetry, is 110 times larger than the lowest single-molecule conductance, for a molecule junction of 2,7-symmetry. We demonstrate clearly that the measured dependence of molecule junction symmetry for single-molecule junctions agrees with theoretical predictions.  相似文献   

17.
Here, the fascinating connection between the chemical and the transport properties of recently fabricated 4,4'-bipyridine/gold nanobridges is addressed. By means of first-principles ab initio calculations, the remarkable reproducibility of the 4,4'-bipyridine conductance properties is explained as the combined result of (i) the bonding of the molecule to the metallic leads through hybridization between the 4,4'-bipyridine highest occupied molecular orbitals and lowest unoccupied molecular orbitals (LUMOs) with s and d orbitals at low-coordination gold atoms, (ii) the limited number of molecule-lead arrangements due to gold-hydrogen steric repulsions, and (iii) the electron transmission through a LUMO-derived resonance, whose positioning with respect to the Fermi level determines which of the above arrangements yields nonnegligible conductance. Structural and electronic interpretations to the stepped dependence reported for the electronic transport of 4,4'-bipyridine as a function of the distance between the gold tips are also given.  相似文献   

18.
利用基于电化学跳跃接触的扫描隧道显微镜裂结法(ECSTM-BJ), 通过现场形成金属电极, 对以Cu和Ag为电极的对苯二甲酸单分子结电导进行了测量. 研究结果表明: 利用该方法对所有数据直接线性统计即可得到很好结果; 两种电极下都存在两套高和低电导值, 其中以Cu为电极的单分子结电导高低值分别为11.5和4.0 nS, 而以Ag为电极的单分子结电导分别为10.3和3.8 nS, 高值都约为低值的3倍, 且以Cu为电极的单分子结电导要略大于以Ag为电极的电导, 可归结于电极和分子的耦合不同造成的. 与同样条件下测量得到的烷基链羧酸单分子结电导只存在一套值相比,对苯二甲酸表现出两套电导值, 反应了分子内主链对分子结电导的影响.  相似文献   

19.
We compare computer simulations to experimental scanning tunneling microscopy (STM) images of chloronitrobenzene molecules on a Cu(111) surface. The experiments show that adsorption induced isomerization of the molecules takes place on the surface. Furthermore, not only the submolecular features can be seen in the STM images, but different isomers can also be recognized. The Todorov-Pendry approach to tunneling produces simulated STM images which are in good accordance with the experiments. Alongside with STM simulations in a tight-binding basis, ab initio calculations are performed in order to analyze the symmetry of relevant molecular orbitals and to consider the nature of tunneling channels. Our calculations show that while the orbitals delocalized to the phenyl ring create a relatively transparent tunneling channel, they also almost isolate the orbitals of the substitute groups at energies which are relevant in STM experiments. These features of the electronic structure are the key ingredients of the accurate submolecular observations.  相似文献   

20.
We investigate a prototypical single-molecule switch marrying force spectroscopy and molecular electronics far from the thermodynamic limit. We use molecular dynamics to simulate a conducting atomic force microscope mechanically manipulating a molecule bound to a surface between a folded state and an unfolded state while monitoring the conductance. Both the complexity and the unique phenomenology of single-molecule experiments are evident in this system. As the molecule unfolds/refolds, the average conductance reversibly changes over 3 orders of magnitude; however, throughout the simulation the transmission fluctuates considerably, illustrating the need for statistical sampling in these systems. We predict that emergent single-molecule signatures will still be evident with conductance blinking, correlated with force blinking, being observable in a region of dynamic bistability. Finally, we illustrate some of the structure-function relationships in this system, mapping the dominant interactions in the molecule for mediating charge transport throughout the pulling simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号