首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional spatial direct numerical simulation is used to investigate the evolution of reactive plumes established on non-circular sources. Simulations are performed for three cases: a rectangular plume with an aspect ratio of 2:1, a square plume, and the square plume in a corner configuration. Buoyancy-induced large scale vortical structures evolve spatially in the flow field. A stronger tendency of transition to turbulence is observed for the free rectangular plume than the free square case due to the aspect ratio effect. Dynamics of the corner square plume differs significantly from the corresponding free case due to the enhanced mixing by the side-wall effects. A turbulent inertial subrange has been observed for the free rectangular and corner square plumes. Mean flow properties are also calculated. The study shows significant effects of source geometry and side-wall boundary on the flow transition and entrainment of reactive plumes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Large-Eddy simulations (LES) of spatially evolving turbulent buoyant round jets have been carried out with two different density ratios. The numerical method used is based on a low-Mach-number version of the Navier–Stokes equations for weakly compressible flow using a second-order centre-difference scheme for spatial discretization in Cartesian coordinates and an Adams–Bashforth scheme for temporal discretization. The simulations reproduce the typical temporal and spatial development of turbulent buoyant jets. The near-field dynamic phenomenon of puffing associated with the formation of large vortex structures near the plume base with a varicose mode of instability and the far-field random motions of small-scale eddies are well captured. The pulsation frequencies of the buoyant plumes compare reasonably well with the experimental results of Cetegen (1997) under different density ratios, and the underlying mechanism of the pulsation instability is analysed by examining the vorticity transport equation where it is found that the baroclinic torque, buoyancy force and volumetric expansion are the dominant terms. The roll-up of the vortices is broken down by a secondary instability mechanism which leads to strong turbulent mixing and a subsequent jet spreading. The transition from laminar to turbulence occurs at around four diameters when random disturbances with a 5% level of forcing are imposed to a top-hat velocity profile at the inflow plane and the transition from jet-like to plume-like behaviour occurs further downstream. The energy-spectrum for the temperature fluctuations show both −5/3 and −3 power laws, characteristic of buoyancy-dominated flows. Comparisons are conducted between LES results and experimental measurements, and good agreement has been achieved for the mean and turbulence quantities. The decay of the centreline mean velocity is proportional to x −1/3 in the plume-like region consistent with the experimental observation, but is different from the x −1 law for a non-buoyant jet, where x is the streamwise location. The distributions of the mean velocity, temperature and their fluctuations in the near-field strongly depend upon the ratio of the ambient density to plume density ρa0. The increase of ρa0 under buoyancy forcing causes an increase in the self-similar turbulent intensities and turbulent fluxes and an increase in the spatial growth rate. Budgets of the mean momentum, energy, temperature variance and turbulent kinetic energy are analysed and it is found that the production of turbulence kinetic energy by buoyancy relative to the production by shear is increased with the increase of ρa0. Received 16 June 2000 and accepted 26 June 2001  相似文献   

3.
This paper is devoted to direct comparisons of related, detailed experimental and numerical studies of the non-linear, late stages of laminar-turbulenttransition in a boundary layer including flow breakdown and the beginning offlow randomization. Preceding non-linear stages of the transition process arealso well documented and compared with previous studies. The experiments wereconducted with the help of a hot-wire anemometer. The numerical study wascarried out by direct numerical simulation (DNS) of the flow employing theso-called spatial approach. Both the experiments and the DNS were performed atcontrolled disturbance conditions with an excitation of instability waves inthe flat-plate boundary layer. In the two cases, the primary disturbanceconsists of a time-harmonic, two-dimensional Tollmien--Schlichting wave thathas a very weak initial spanwise modulation. Despite somewhat differentinitial disturbance conditions used in the experiment and simulation, thesubsequent flow evolution at late non-linear stages is found to be practicallythe same. Detailed qualitative and quantitative comparisons of theinstantaneous velocity and vorticity fields are performed for twocharacteristic stages of the non-linear flow breakdown: (i) “one-spike stage” and (ii) “three-spike stage.” The twoapproaches clearly show in detail the process of development of the Γ-structure, a periodical formation of ring-like vortices, the evolution of the surrounding flow field, and the beginning of flowrandomization. In particular, it is found experimentally and numerically thatthe ring-like vortices (associated with the well-known spikes) induce somerather intensive positive velocity fluctuations (positive spikes) in thenear-wall region which have the same scales as the ring-like vortices and propagate downstream with the same high (almost free-stream) speed. The positive spikes form a new high-shear layer in the near-wall region. In the experiment the induced near-wall perturbationshave a significant irregular low-frequency component. These non-periodicalmotions play an important role in the process of flow randomization and finaltransition to turbulence that starts under the ring-like vortices in thevicinity of the peak position. Received 13 December 2000 and accepted 30 October 2001  相似文献   

4.
The transitional turbulent regime in confined flow between a rotating and a stationary disc is studied using direct numerical simulation. Besides its fundamental importance as a three-dimensional prototype flow, such flows frequently arise in many industrial devices, especially in turbomachinary applications. The present contribution extends the DNS simulation into the turbulent flow regime, to a rotational Reynolds number Re =3 × 105. An annular rotor-stator cavity of radial extension ΔR and height H, is considered with L = 4.72(L = ΔR/H) and Rm = 2.33 (Rm = (R 1+ R 0)/ΔR). The direct numerical simulation is performed by integrating the time-dependent Navier–Stokes equations until a statistically steady state is reached. A three-dimensional spectral method is used with the aim of providing both very accurate instantaneous fields and reliable statistical data. The instantaneous quantities are analysed in order to enhance our knowledge of the physics of turbulent rotating flows. Also, the results have been averaged so as to provide target turbulence data for any subsequent modelling attempts at reproducing the flow. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Numerical Simulation of Single-Stream Jets from a Serrated Nozzle   总被引:1,自引:0,他引:1  
Hybrid large-eddy type simulations for cold jet flows from a serrated nozzle are performed at an acoustic Mach number Ma ac ?=?0.9 and Re?=?1.03×106. Since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving a numerical type LES (NLES) or implicit LES (ILES) reminiscent procedure. To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier-Stokes) model is smoothly blended to the LES making a hybrid RANS-ILES. The geometric complexity of the serrated nozzle is fully considered without simplification or emulation. An improved but still modest hexahedral multi-block grid with circa 20 million grid points (with respect to 12.5 million in Xia et al., Int J Heat Fluid Flow 30:1067–1079, 2009) is used. Despite the modest grid size, encouraging and improved results are obtained. Directly resolved mean and second-order fluctuating quantities along the jet centerline and in the jet shear layer compare favorably with measurements. The radiated far-field sound predicted using the Ffowcs Williams and Hawkings (FW-H) surface integral method shows good agreement with the measurements in directivity and sound spectra.  相似文献   

6.
非定常俯抑振荡下的横向喷流数值模拟   总被引:2,自引:0,他引:2  
赵海洋  刘伟  任兵 《力学季刊》2007,28(3):363-368
采用高精度格式数值求解RANS方程,研究了定常状态下横向喷流流场,压力分布计算结果与实验结果基本吻合,并捕捉到喷流干扰流场中多种流动结构.在非定常计算过程中,飞行器的振动引起了法向力和俯仰力矩系数的相位滞后,推力放大因子随俯仰角周期变化.飞行器振动过程中,喷流流场的动态气动特性与稳态喷流有明显的区别,因此在利用横向喷流对飞行器进行姿态控制时,应该考虑由于飞行器姿态的变化对横向喷流所产生的非定常影响问题.  相似文献   

7.
The present paper deals with suppression of vortex induced vibrations (VIV) by introducing radial water jets from circular openings in the wall of the oscillating cylinder. Overpressure within the water-filled cylinder propels water jets blowing out into the ambient flow as a means to alter the vortex shedding process. This flow will introduce a disturbance that is expected to yield reduced VIV amplitudes. Results are presented from experiments in a towing tank testing a spring-supported cylinder with two straight rows of radial water jets along the the cylinder, located at positions +120° and?120° on the cylinder circumference. A smooth cylinder with no openings is tested for comparison. Direct Numerical Simulations (DNS) have been performed using the Spectral/hp element code Nεκταr. Outflow through openings in the cylinder wall is modeled, and a parameter study is performed where number of jets as well as jet location on the cylinder circumference and jet flow rate are varied.  相似文献   

8.
A plane supersonic flow with symmetric perpendicular injection of jets through slots in the walls is numerically simulated with the use of Navier–Stokes equations. The effect of the jet pressure ratio and Mach number on the flow structure is considered. The angle of inclination of the shock wave and the separationregion length are found as functions of the jet pressure ratio. The influence of the jet pressure ratio on the increase in the lift force arising owing to interaction of the flow with the injected jet is found.  相似文献   

9.
10.
Direct Numerical Simulation of a linearly accelerating channel flow starting from an initially statistically steady turbulent flow has been performed. It is shown that the response of the accelerating flow is fundamentally the same as that of the step-change transient flow described in He and Seddighi (J Fluid Mech 715:60–102, 2013). The flow structure again behaves like a boundary layer bypass transition undergoing three distinct phases, namely, (i) initially (pre-transition), the flow is laminar-like and the pre-existing turbulent structures are modulated resulting in elongated streaks leading to a strong and continuous increase in the streamwise fluctuating velocity but little changes in the other two components; (ii) it then undergoes transition when isolated turbulent spots are generated which spread and merge with each other, and (iii) they eventually cover the entire surface of the wall when the flow is fully turbulent. The similarity between the turbulence responses in the two flows is significant noting the contrasting features of the two types of mean flow unsteadiness: in the step-change flow, a sharp boundary layer is resulted in nearly instantly on the wall which closely resembles the spatially developing boundary layer, whereas the linear flow acceleration causes a continuing change of velocity gradient adjacent to the wall which propagates into the flow field with time, resulting in a gradually-developing boundary layer. There are, however, quantitative differences in the detailed behavior of the two flows and especially the transition is much delayed in the accelerating flow. It is also shown that the late pre-transition and early transition stages in both flows are characterised by significantly increased inwards sweep events in the wall region and ejection events in the outer layer. The flatness of the wall-normal velocity increases markedly near the wall around the time of onset of transition as a consequence of the huge intermittency of the velocity fluctuations. That is, there are long periods of quiescent flow coupled with occasional turbulent bursts.  相似文献   

11.
Direct numerical simulation(DNS) of spatially developing round turbulent jet flow with Reynolds number 4,700 was carried out. Over 20 million grid points were used in this simulation. Fully compressible three-dimensional Navier–Stokes equations were solved. High order explicit spatial difference schemes and Runge–Kutta time integration scheme were used to calculate derivatives and time marching, respectively. Non-reflecting boundary conditions and exit zone techniques were adopted. Some refined computational grids were used in order to capture the smallest turbulent structures near the centerline of the jet. Low level disturbance were imposed on the jet inflow velocity to trigger the developing of turbulence. Turbulent statistics such as mean velocity, Reynolds stresses, third order velocity moments were obtained and compared with experimental data. One-dimensional velocity autospectra was also calculated. The inertial region where the spectra decays according to the k − 5/3 was observed. The quantitative profiles of mean velocity and all of the third order velocity moments which were difficult to measure via experimental techniques were presented here in detail. The jet flow was proven to be close to fully self-similar around 19 jet diameters downstream of jet exit. The statistic data and revealed flow feature obtained in this paper can provide valuable reference for round turbulent jet research.  相似文献   

12.
A numerical procedure for the direct numerical simulation of compressible turbulent flow and shock–turbulence interaction is detailed and analyzed. An upwind-biased finite-difference scheme with a compact centered stencil is used to discretize the convective part of the Navier–Stokes equations. The scheme has a uniformly high approximation order and allows for a spectral-like wave resolution while dissipating nonresolved wave numbers. When hybridized with an essentially nonoscillatory scheme near discontinuities, the scheme becomes shock–capturing and its resolution properties are preserved. Diffusive parts are discretized with symmetric compact finite differences and an explicit Runge–Kutta scheme is used for time-advancement. The peculiarities of efficient upwinding and coupling procedures are described and validation results are given. Using direct numerical simulation data, some aspects of turbulent supersonic compression ramp flow are studied to demonstrate the effectiveness of the simulation procedure. Received 13 November 1997 and accepted 14 May 1998  相似文献   

13.
A direct numerical simulation (DNS) of a recirculating, swirling flow is performed at a Reynolds number of 5000. Detailed one and two point statistics are presented in this paper. Flow visualization and frequency analysis are used to identify a precessing vortex core and to characterize its position, extent and influence on the flow field. The results are compared with laser Doppler velocimetry (LDV) measurements as well as large eddy simulation (LES) data reported in the literature. The present work constitutes a first step in setting up a DNS data base for complex flows.  相似文献   

14.
The issue of turbine lifetime is an important one, particularly for modern turbines operating at high temperature regimes. A cooling design such as ribs may achieve an improved lifetime and complex mechanisms of heat transfer need to be well studied. In this paper, a Direct Numerical Simulation (DNS) is presented for a 3-D channel flow with two square ribs on the lower wall. The full unsteady compressible Navier-Stokes equations are solved with an original hybrid finite difference/finite element scheme. The Reynolds number of the simulation is 7 000 based on the bulk velocity at the inlet and the channel height. The present study is mainly devoted to understand the mechanism of heat transfer at the wall through the topological analysis of the flow and the temperature flux. Results show that the large-scale structures generated by obstacles splash onto the lower surface and induce longitudinal vortices which enhance heat transfer at the wall. A comprehensive data base including 56 correlations was set up for testing and improving turbulence models for this complex, separated flow.  相似文献   

15.
Numerical simulations of heat transfer in non-isothermal particulate flows are important to better understand the flow pattern. The complexity of numerical algorithms coupling the heat and mass transfer and the considerable computational resources required limit the number of such direct simulations that can be reasonably performed. We suggest a Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) method to compute the temperature distribution and the heat exchange between the fluid and solid phases. The Boussinesq approximation is considered for the flow/temperature fields coupling. We employ a Finite Element Method (FEM) to solve the fluid flow conservation equations for mass, momentum and energy. The motion of particles is computed by a Discrete Element Method (DEM). On each particle, heat transfer is solved using a FEM. For each class of particles, we generate a single FEM grid and translate/rotate it at each time step to match the physical configuration of each particle. Distributed Lagrange multipliers for both the velocity and temperature fields are introduced to treat the fluid/solid interaction. This work is an extension of the method we proposed in Yu et al. (2006). Two two-dimensional (2D) test cases are proposed to validate the implementation by comparing our computational results with those reported in the literature. Finally, the sedimentation of a single sphere in a semi-infinite channel is presented and the results are discussed.  相似文献   

16.
Direct Numerical Simulations were conducted to describe a well-known and widely studied configuration, i.e. flow field development downstream from a cylinder under the mixed convection regime, which has too rarely been considered. The Richardson number studied was equal to 2.77 and the Reynolds number equal to 1000; under such conditions, thermal instability development along the cylinder was found to interact with and pronouncedly disturb upper shear-layer development. Whole flow behavior in the back of the cylinder is consequently asymmetric. The resulting flow corresponds to complex features ranging from Kelvin–Helmholtz instabilities to pure buoyant diffusion process and Von Karman alley, the latter being significantly deviated upward.  相似文献   

17.
碎石料直剪实验的组合颗粒单元数值模拟   总被引:3,自引:0,他引:3  
通过构造三维组合颗粒单元来描述颗粒间的互锁效应,对非规则颗粒材料的力学行为进行了离散元数值模拟,并通过碎石料的直剪实验进行了验证.该组合颗粒的质量与碎石块具有相同的概率分布特性,其几何形态则由不同数目、镶嵌尺寸、组合方位和粒径的球形颗粒进行随机构造.组合颗粒单元在局部与整体坐标之间的转动、力矩和方位关系通过四元素方法进行确定;颗粒之间的作用力采用具有Mohr-Coulomb摩擦定侓的Hertz-Mindlin 非线性接触模型,并考虑了非线性法向粘滞力的影响.在不同的法向应力下,对碎石料在直剪实验中的剪切应力和剪胀现象进行了离散元模拟,计算结果与实测结果相吻合;此外,在不同的法向应力和接触摩擦系数下,对碎石料的有效摩擦系数进行了计算和讨论.本文工作验证了组合颗粒单元在非规则颗粒材料的离散元模拟中的可行性.  相似文献   

18.
This paper describes a direct numerical simulation (DNS) study of turbulent flow over a rectangular trailing edge at a Reynolds number of 1000, based on the freestream quantities and the trailing edge thickness h; the incoming boundary layer displacement thickness δ* is approximately equal to h. The time-dependent inflow boundary condition is provided by a separate turbulent boundary layer simulation which is in good agreement with existing computational and experimental data. The turbulent trailing edge flow simulation is carried out using a parallel multi-block code based on finite difference methods and using a multi-grid Poisson solver. The turbulent flow in the near-wake region of the trailing edge has been studied first for the effects of domain size and grid resolution. Then two simulations with a total of 256 × 512 × 64 (∼ 8.4×106) and 512 × 1024 × 128 (∼ 6.7×107) grid points in the computational domain are carried out to investigate the key flow features. Visualization of the instantaneous flow field is used to investigate the complex fluid dynamics taking place in the near-wake region; of particular importance is the interaction between the large-scale spanwise, or Kármán, vortices and the small-scale quasi-streamwise vortices contained within the inflow boundary layer. Comparisons of turbulence statistics including the mean flow quantities are presented, as well as the pressure distributions over the trailing edge. A spectral analysis applied to the force coefficient in the wall normal direction shows that the main shedding frequency is characterized by a Strouhal number based on h of approximately 0.118. Finally, the turbulence kinetic energy budget is analysed. Received 4 March 1999 and accepted 27 October 2000  相似文献   

19.
Direct numerical and large eddy simulation (DNS and LES) are applied to study passive scalar mixing and intermittency in turbulent round jets. Both simulation techniques are applied to the case of a low Reynolds number jet with Re = 2,400, whilst LES is also used to predict a high Re = 68,000 flow. Comparison between time-averaged results for the scalar field of the low Re case demonstrate reasonable agreement between the DNS and LES, and with experimental data and the predictions of other authors. Scalar probability density functions (pdfs) for this jet derived from the simulations are also in reasonable accord, although the DNS results demonstrate the more rapid influence of scalar intermittency with radial distance in the jet. This is reflected in derived intermittency profiles, with LES generally giving profiles that are too broad compared to equivalent DNS results, with too low a rate of decay with radial distance. In contrast, good agreement is in general found between LES predictions and experimental data for the mixing field, scalar pdfs and external intermittency in the high Reynolds number jet. Overall, the work described indicates that improved sub-grid scale modelling for use with LES may be beneficial in improving the accuracy of external intermittency predictions by this technique over the wide range of Reynolds numbers of practical interest.  相似文献   

20.
The forced transition of the boundary layer on an axisymmetric flared cone in Mach 6 flow is simulated by the method of spatial direct numerical simulation (DNS). The full effects of the flared afterbody are incorporated into the governing equations and boundary conditions; these effects include nonzero streamwise surface curvature, adverse streamwise pressure gradient, and decreasing boundary-layer edge Mach number. Transition is precipitated by periodic forcing at the computational inflow boundary with perturbations derived from parabolized stability equation (PSE) methodology and based, in part, on frequency spectra available from physical experiments. Significant qualitative differences are shown to exist between the present results and those obtained previously for a cone without afterbody flare. In both cases, the primary instability is of second-mode type; however, frequencies are much higher for the flared cone because of the decrease in boundary-layer thickness in the flared region. Moreover, Goertler modes, which are linearly stable for the straight cone, are unstable in regions of concave body flare. Reynolds stresses, which peak near the critical layer for the straight cone, exhibit peaks close to the wall for the flared cone. The cumulative effect appears to be that transition onset is shifted upstream for the flared cone. However, the length of the transition zone may possibly be greater because of the seemingly more gradual nature of the transition process on the flared cone. Received 20 March 1997 and accepted 21 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号