首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
3-Aryl-4-(5-aryl-Δ2-1,2,4-oxadiazolin-3-yl)sydnones (5) were synthesized in high yields by the reaction of 3-arylsydnone-4-carboxamide oximes (prepared from the corresponding 3-arylsydnone-4-carbonitriles) with aromatic aldehydes in the presence of acid catalysts. No reaction occurred when aliphatic aldehydes were used. The oxadiazolin-3-ylsydnones (5) were easily converted into the corresponding 3-aryl-4-(5-aryl-1,2,4-oxadiazol-3-yl)sydnones by N-bromosuccinimide oxidation. The 3-arylsydnone-4-carbonitrile oxides were synthesized in good yields by N-bromosuccinimide oxidation of the corresponding 3-arylsydnone-4-carboxaldehyde oximes.  相似文献   

2.
Condensation of Schiff"s bases (prepared from 2-hydroxy- or 2-hydroxy-5-methylacetophenones and primary amines) with ethyl polyfluoroalkanoates in the presence of LiH in THF affords 3-alkylamino-3-(2-hydroxyaryl)-1-polyfluoroalkylprop-2-en-1-ones, which undergo cyclization in acidic media into 2-polyfluoroalkyl-4H-chromen-4-iminium salts. When neutralized with aqueous ammonia, the latter give 2-polyfluoroalkyl-4H-chromen-4-imines in high yields.  相似文献   

3.
4.
Quinoxaline-3-ketones substituted by different groups in position 2 (I) are easily cyclized by hydroxylamine and phenylhydrazine to form isoxazolo[4, 5-b] quinoxalines (II) and pyrazolo [3, 4-b] quinoxalines (III) respectively. The reactions proceed via the oximes resp. phenylhydrazones. Groups displaced are not only the customary leaving groups of aromatic SN2 reactions (halogens, OH), but likewise H, COOH, CONH2, CO-Ar, and, less easily, benzyl groups; methyl and phenyl groups were not displaced. The displacement of hydride ion in the presence of excess of hydroxylamine resp. phenylhydrazine is explained in terms of an extension of the theory of osazone formation.  相似文献   

5.
A combinatorial library of 4-(2-hydroxyaryl)-3-nitro-4H-chromenes was synthesized in high yield by C4-SMe substitution in N-alkyl/phenyl 4-(methylthio)-3-nitro-4H-chromen-2-amines with a variety of phenols. The reaction always provided C2 substitution in the phenol ring, dictated by hydrogen bond interactions between the phenolic hydroxyl group and the nitro group in 3-nitro-4H-chromenes. Reduction of the nitro group with concomitant hydrolysis of the enamine in 4-(2-hydroxyaryl)-3-nitro-4H-chromenes with Zn, Ac2O in AcOH furnished hybrid amino-acid lactone incorporating ortho-tyrosine and phenyl alanine moieties.  相似文献   

6.
The synthesis of three 1-(4-trifluoromethylphenyl)-3-methyl-4-R1(C=O)-5-pyrazolone proligands LH (L1H; R1=C6H5: L2H; R1=CH3: L3H; R1=CF3) and their interaction with R3Sn(IV) acceptors (R=Me, Bun, Ph) are reported. When R=Me or Bun, aquo (4-acylpyrazolonate)SnR3(H2O) derivatives are obtained and the anionic donors 4-acylpyrazolonate (L) act in the O–monodentate form. These triorganotin complexes are not stable in chlorohydrocarbon solvents and decompose to R4Sn and bis(4-acyl-5-pyrazolonate)2SnR2. When R=Ph, stable (4-acyl-5-pyrazolonate)SnPh3 derivatives, both in solution and in the solid state, are obtained. The crystal structure of (1-(4-trifluoromethylphenyl)-3-methyl-4-acetylpyrazolon-5-ato)triphenyltin(IV) shows a five-coordinate tin atom in a strongly distorted cis-bipyramidal trigonal environment (axial angle=161.2(2)°) with the acylpyrazolonate donor acting as an asymmetric O2–bidentate species (Sn–O(1)=2.081(6) Å: Sn–O(2)=2.424(5) Å). Electronic effects are responsible for the different behavior shown by these trialkyl and triphenyl derivatives.  相似文献   

7.
Two new compounds of the AxMOXO4 family, β-LiVOAsO4 and β-VOAsO4, have been synthesized by solid state reaction and electrochemical lithium deintercalation from β-LiVOAsO4, respectively. Both compounds are isostructural and are built like other β-VOXO4 (X=S, P) by (VO5) chains of distorted VO6 octahedra connected via corner-shared AsO4 tetrahedra. For β-LiVOAsO4 the additional Li+ ions occupy chains of edge-shared octahedra running perpendicularly to the (VO5) chains. The one-dimensional antiferromagnetic behavior suggested by the structure has been experimentaly confirmed. It is shown that lithium deintercalation occurs through a first-order transition at 4.02 V vs Li+/Li0. From chemical bond considerations it is shown why the redox potential of a given transition element M in a six-fold coordination involving (M=O)m+ units lies between those observed in oxides and in M2(XO4)3 compounds with (XO4)n oxo anions (X=S, P, As).  相似文献   

8.
Summary 4-Phosphoranylidene-5(4H)-oxazolones (2), a hardly known class of phosphorus ylides, were readily prepared from 4-unsubstituted-5-(4H)-oxazolones (1) by treatment with Ph3P-Br2, Bu3P-Br2, Ph3P-CCl4, or Ph3P-CBr4 adducts in the presence of triethylamine in CH2Cl2 at room temperature in a novel, efficient one-pot procedure. The spectroscopic properties of the ylides are reported and discussed.
4-Phosphoranyliden-5(4H)-oxazolone — Eine neue Synthese und Eigenschaften
Zusammenfassung 4-Phosphoranyliden-5(4H)-oxazolone, eine sehr wenig bekannte Gruppe der Phosphor-ylide, wurden auf einfache Weise nach einem neuen Eintopfverfahren mit guten Ausbeuten hergestellt. Als Ausgangsverbindungen wurden 4-unsubtituierte-5-(4H)-Oxazolone (1) eingesetzt, die unter der Einwirkung von Addukten wie Ph3P-Br2, Bu3P-Br2, Ph3P-CCl4 oder Ph3P-CBr4 in Anwesenheit von Triethylamin in CH2Cl2 bei Zimmertemperatur die Titelverbindungen liefern. Die spektroskopischen Eigenschaften der Ylide werden berichtet und diskutiert.
  相似文献   

9.
3-Chloro-2-polyfluoroalkyl- and 3-chloro-6-nitro-2-polyfluoroalkylchromones were synthesized. These compounds react with N2H4·2HCl on boiling in ethanol to form 4-chloro-3(5)-(2-hydroxyaryl)-5(3)-polyfluoroalkylpyrazoles.  相似文献   

10.
The reaction of hexafluoro-cyclo-triphosphazene P3N3F6 with ammonia in acetonitrile has been studied. New compounds, (2-imino-2,4,4,6,6-pentafluoro-2λ5,4λ5,6λ5-cyclo-triphosphaza-1,3,5-trienyl)-2-amino-4,4,6,6-tetrafluoro-2λ5,4λ5,6λ5-cyclo-triphosphaza-1,3,5-triene, P3N3F5–NH–P3N3F4NH2 (2) and cis and trans isomers of non-gem-2,4-diamino-2,4,6,6-tetrafluoro-2λ5,4λ5,6λ5-cyclo-triphosphaza-1,3,5-triene, P3N3F4(NH2)2 (4, 5), were detected by GC/MS, and 31P NMR spectroscopy in reaction mixtures. X-ray diffraction analysis of P3N3F5–NH–P3N3F4NH2 (2) revealed two conformational polymorphs, 2A and 2B, the latter being built up of two different conformers that were further denoted as 2Ba (the same as the single conformer in 2A) and 2Bb. The compound 2 was characterized by spectroscopic methods and its 2D potential energy surface (PES) was described by density functional theory computations depending on two dihedral angles. The calculated PES spans over 30 kJ/mol in energy including 8 local minima and all first and second order saddle points. The occurrence of the two experimentally observed conformers 2Ba and 2Bb seems to be governed by crystal packing effects.  相似文献   

11.
2-Trifluoromethyl-4H-thiochromene-4-thione obtained from 2-trifluoromethyl-4H-thiochromen-4-one and P2S5 reacts with aromatic amines, hydrazine hydrate, phenylhydrazine, and hydroxylamine at the C(4) atom of the chromene ring to give the corresponding anils, azine, hydrazones, and oxime of thiochromone. 2-Trifluoromethyl-4H-thiochromen-4-one is oxidized by hydrogen peroxide in AcOH into 4-oxo-2-trifluoromethyl-4H-thiochromene 1,1-dioxide and reduced by NaBH4 to 2-trifluoromethyl-4H-thiochromen-4-ol or cis-2-(trifluoromethyl)thiochroman-4-ol. When treated with hydrazine hydrate, thiochromen-4-one gives 3(5)-(2-mercaptophenyl)-5(3)-trifluoromethylpyrazole. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 504–509, March, 2006.  相似文献   

12.
The crystal and molecular structures of the 3′,5′-di-O-acetyl-N(4)-hydroxy-2′-deoxycytidine molecule and its 5-fluoro congener have been determined by X-ray single crystal diffraction. The 3′,5′-di-O-acetyl-N(4)-hydroxy-5-fluoro-2′-deoxycytidine molecule crystallizes in the space group C2 with the following unit cell parameters: a = 21.72 Å, b = 8.72 Å, c = 8.61 Å, and β = 90.42. 3′,5′-di-O-acetyl-N(4)-hydroxy-2′-deoxycytidine also belongs to the monoclinic space group C2 and the unit cell parameters are: a = 39.54 Å, b = 8.72 Å, c = 22.89 Å, and β = 95.26. The non-fluorine analogue demonstrates a rare example of crystal structure with five symmetry-independent molecules in the unit cell. All the molecules in both crystal structures have the sugar residue anti oriented with respect to the base, as well as have the N(4)-OH residue in cis conformation relatively to the N(3)-nitrogen atom. In addition to the molecular geometries from X-ray experiment, the optimized molecular geometries have been obtained with the use of theoretical ab initio calculations at the RHF/6-31G(d) level. The corresponding geometric parameters in the molecules of 3′,5′-di-O-acetyl-N(4)-hydroxy-2′-deoxycytidine and its 5-fluoro congener have been compared. The differences including the C(5)=C(6) bond shortening and C(4)—C(5)—C(6) angle widening in the fluorine analogue are discussed in this paper in relation to the molecular mechanism of enzyme, thymidylate synthase, inhibition by N(4)-hydroxy-2′-deoxycytidine monophosphate and its 5-fluoro congener.  相似文献   

13.
N-Hydroxy-3-arylsydnone-4-carboxamide oximes (7) were prepared from the corresponding 3-arylsydnone-4-carbohydroximic acid chlorides (6) and hydroxylamine in high yield. The chemical reactivity of compound (2) is somewhat different from 3-arylsydnone-4-carboxamide oximes (2) in that the former compounds reacted with both aromatic and aliphatic aldehydes in the presence of acid catalyst to give 3-aryl-4-(5-aryl-1,2,4-oxadiazol-3-yl)sydnones (5) and 3-aryl-4-(5-alkyl-1,2,4-oxadiazol-3-yl)sydnones (3).  相似文献   

14.
A study of the electron impact and chemical ionization (H2, CH4, and iso-C4H10) mass spectra of stereoisomeric benzoin oximes and phenylhydrazones indicates that while the former can be distinguished only by their chemical ionization mass spectra the latter are readily distinguishable by both their electron impact and chemical ionization mass spectra. The electron impact mass spectra of the isomeric oximes are practically identical; however, the chemical ionization spectra show that the E isomer forms more stable [MH]+ and [MH? H2O]+ ions than the Z isomer for which both the [MH]+ and [MH? H2O]+ ions are relatively unstable. In electron impact the Z-phenylhydrazone shows a lower [M]+˙ ion abundance and more facile loss of H2O than does the E isomer. This more facile H2O loss also is observed for the [MH]+ ion of the Z isomer under chemical ionization conditions.  相似文献   

15.
[7,7-(PMe2Ph)2-9-(η6-isoPrC6H4Me)-7,9-PtRuB9H11] has a formal closo Wadian cluster-electron count, but a nido geometry, whereas [1-(η6-isoPrC6H4Me)-4,4-(PMe2Ph)2-1-4-RuPtB9H9], which does have a closo geometry, has a formal sub-closo cluster electron count; both compounds are formed in the reaction between [6-(η6-isoPrC6H4Me)-nido-6 RuB9H13], KH and [PtCl2(PMe2Ph)2].  相似文献   

16.
The synthesis and characterization of a series of cobalt(III) complexes of the general type [Co(N2O2)(L2)]+ are described. The N2O2 Schiff base ligands used are Me-salpn (H2Me-salpn = N,N′-bis(methylsalicylidene)-1,3-propylenediamine) (13) and Me-salbn (H2Me-salbn = N,N′-bis(methylsalicylidene)-1,4-butylenediamine) (45). The two ancillary ligands L include: pyridine (py) 1, 3-metheylpyridine (3-Mepy) 2, 1-methylimidazole (1-MeIm) 3, 4-methylpyridine (4-Mepy) 4 and pyridine (py) 5. These complexes have been characterized by elemental analyses, IR, UV–Vis, and 1H NMR spectroscopy. The crystal structures of trans-[CoIII(Me-salpn)(py)2]PF6, 1, and cis-α-[CoIII(Me-salbn)(4-Mepy)2]BPh4 · 4-Mepy, 4, have been determined by X-ray diffraction. Examination of the solution and crystalline structures revealed that the outer coordination sphere of the complexes exerts a noticeable influence on the inner coordination sphere of the Co(III) ion. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to CoIII–CoII is electrochemically irreversible, which is accompanied by the dissociation of the axial (R-py)–cobalt bonds. It has also been observed that the Co(III) state is stabilized with increasing the flexibility of the ligand environment.  相似文献   

17.
Reaction of cis-[Mo(NCMe)2(CO)2(η5-L)][BF4] (L=C5H5 or C5Me5) with 1-acetoxybuta-1,3-diene gives the cationic complexes [Mo{η4-syn-s-cis-CH2CHCHCH(OAc)}(CO)2(η5-L)][BF4], which, on reaction with aqueous NaHCO3/CH2Cl2, afford good yields of the anti-aldehyde substituted complexes [Mo{η3-exo-anti-CH2CHCH(CHO)}(CO)2(η5-L)] 2 (L=C5Me5), 4 (L=C5H5)]. The corresponding η5-indenyl substituted complex 5 was prepared by protonation (HBF4·OEt2) of [Mo(η3-C3H5)(CO)2(η5-C9H7)] followed by addition of CH2=CHCH=CH(OAc) and hydrolysis (aq. NaHCO3/CH2Cl2). An X-ray crystallographic study of complex 2 confirmed the structure and showed that there is a contribution from a zwitterionic form involving donation of electron density from the molybdenum to the aldehyde carbonyl group. Treatment of 2 and 4, in methanol solution, with NaBH4 afforded the alcohols [Mo{η3-exo-anti-CH2CHCHCH2(OH)}(CO)2(η5-L)] [6 (L=C5H5), 8 (L=C5Me5)]; however, prolonged (30 h) reaction with NaBH4/MeOH surprisingly gave good yields of the methoxy-substituted complexes [Mo{η3-exo-anti-CH2CHCHCH2(OMe)}(CO)2(η5-L)] [7 (L=C5H5), 9 (L=C5Me5)], the structure of 7 being confirmed by single crystal X-ray crystallography. This methoxylation reaction can be explained by coordination of the hydroxyl group present in 6 and 8 onto B2H6 to form the potential leaving group HOBH3, which on ionisation affords [Mo(η4-exo-buta-1-3-diene)(CO)2(η5-L)]+ which is captured by reaction with OMe. Complex 8 is also formed in good yield on reaction of 2 with HBF4·OEt2 followed by treatment of the resulting cation [Mo{η4-exo-s-cis-syn-CH2CHCHCH(OH)}(CO)2(η5-C5Me5)][BF4] with Na[BH3CN]. Reaction of 4 with the Grignard reagents MeMgI, EtMgBr or PhMgCl afforded moderate yields of the alcohols [Mo{η3-exo-anti-CH2CHCHCH(OH)R}(CO)2(η5-C5H5)] [11 (R=Me), 12 (R=Et), 13 (R=Ph)]. Similarly, treatment of 2 with MeLi gave the corresponding alcohol 14. An attempt to carry out the Oppenauer oxidation [Al(OPr′)3/Me2CO] of 11 resulted in an elimination reaction and the formation of the η3-s-pentadienyl complex [Mo{η3-exo-anti-CH2CHCH(CHCH2)}(CO)2(η5-C5H5)], which was structurally identified by X-ray crystallography. Interestingly, oxidation of 6 with [Bu4nN][RuO4]/morpholine-N-oxide affords the aldehyde complex, 4 in good yield. Finally, reaction of 11 with [NO][BF4] followed by addition of Na2CO3 affords the fur-3-ene complex [Mo{η2-
(H)Me}(CO)(NO)(η5-C5H5)].  相似文献   

18.
Chromium(III)-phosphate reactions are expected to be important in managing high-level radioactive wastes stored in tanks at many DOE sites. Extensive studies on the solubility of amorphous Cr(III) solids in a wide range of pH (2.8–14) and phosphate concentrations (10–4 to 1.0 m) at room temperature (22±2)°C were carried out to obtain reliable thermodynamic data for important Cr(III)-phosphate reactions. A combination of techniques (XRD, XANES, EXAFS, Raman spectroscopy, total chemical composition, and thermodynamic analyses of solubility data) was used to characterize solid and aqueous species. Contrary to the data recently reported in the literature,(1) only a limited number of aqueous species [Cr(OH)3H2PO4, Cr(OH)3(H2PO4)2–2), and Cr(OH)3HPO2–4] with up to about four orders of magnitude lower values for the formation constants of these species are required to explain Cr(III)-phosphate reactions in a wide range of pH and phosphate concentrations. The log Ko values of reactions involving these species [Cr(OH)3(aq)+H2PO4⇌Cr(OH)3H2PO4; Cr(OH)3(aq)+2H2PO4⇌Cr(OH)3(H2PO4)2–2; Cr(OH)3(aq)+HPO2–4⇌Cr(OH)3HPO2–4] were found to be 2.78±0.3, 3.48±0.3, and 1.97±0.3, respectively.  相似文献   

19.
2, 4‐Dimethylpenta‐1, 3‐diene and 2, 4‐Dimethylpentadienyl Complexes of Rhodium and Iridium The complexes [(η4‐C7H12)RhCl]2 ( 1 ) (C7H12 = 2, 4‐dimethylpenta‐1, 3‐diene) and [(η4‐C7H12)2IrCl] ( 2 ) were obtained by interaction of C7H12 with [(η2‐C2H4)2RhCl]2 and [(η2‐cyclooctene)2IrCl]2, respectively. The reaction of 1 or 2 with CpTl (Cp = η5‐C5H5) yields the compounds [CpM(η4‐C7H12)] ( 3a : M = Rh; 3b : M = Ir). The hydride abstraction at the pentadiene ligand of 3a , b with Ph3CBF4 proceeds differently depending on the solvent. In acetone or THF the “half‐open” metallocenium complexes [CpM(η5‐C7H11)]BF4 ( 4a : M = Rh; 4b : M = Ir) are obtained exclusively. In dichloromethane mixtures are produced which additionally contain the species [(η5‐C7H11)M(η5‐C5H4CPh3)]BF4 ( 5a : M = Rh; 5b : M = Ir) formed by electrophilic substitution at the Cp ring, as well as the η3‐2, 4‐dimethylpentenyl compound [(η3‐C7H13)Rh{η5‐C5H3(CPh3)2}]BF4 ( 6 ). By interaction of 2, 4‐dimethylpentadienyl potassium with 1 or 2 the complexes [(η4‐C7H12)M(η5‐C7H11)] ( 7a : M = Rh; 7b : M = Ir) are generated which show dynamic behaviour in solution; however, attempts to synthesize the “open” metallocenium cations [(η5‐C7H11)2M]+ by hydride abstraction from 7a , b failed. The new compounds were characterized by elemental analysis and spectroscopically, 4b and 5a also by X‐ray structure analysis.  相似文献   

20.
One-electron oxidation of the oximes R2P(=O)C(=NOH)X (X = Cl or Br) generates the nitrile oxides R2P(=O)C+=NO, which serve as spin traps for unstable carbon-centered radicals.The latter are generated upon addition of PbO2 to a mixture of formohydroximoyl halide with an alcohol or an ether of the general formula R1OCHR2R3 under the action of atomic chlorine (bromine) released during the generation of nitrile oxide. This gives rise to new, more persistent C phosphoryliminoxyls R2P(=O)C(=NO·)C(OR1)R2R3 (R1, R2, R3 = H, Alk). When primary alcohols (R1 = R2 = H) are used, acyl radicals generated at the initial step of the reaction are also trapped by nitrile oxides to give C-acyl-C phosphoryl iminoxyl radicals R2P(O)C(=NO·)C(=O)R3. Hyperfine coupling constants for more than 20 C-phosphoryl-iminoxyls existing in solutions as mixtures of Z- and E-isomers were determined.The effect of the structure of the primary radical (length of the carbon chain, degree of branching, the presence of a ring, and its size) on the radiospectroscopic characteristics of new C-phosphoryliminoxyl radicals was studied.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 336–341, February, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号