共查询到18条相似文献,搜索用时 339 毫秒
1.
GECISM(GEneral computer immune system model)是基于规则匹配检测的计算机免疫系统,免疫识别规则对“自我”和“非我”特征的表征能力直接影响到GECISM的性能,所以挖掘高效免疫识别规则的是GECISM的一个重要研究内容。改进后的Apriori算法以系统调用序列为数据源,从“自我”集和“非我”集中计算出频繁谓词,进而产生免疫识别规则。这些规则反映了“自我”和“非我”的内在特征,是GECISM进行“非我”检测的判据。 相似文献
2.
3.
4.
关联规则挖掘是从大量的数据中挖掘出有价值描述数据项之间相互联系的有关知识.对于大型数据库来说,有算法的执行时间太长等问题.分析和探讨了Apriori算法,提出了基于Apriori算法的一种有效的关联规则挖掘算法,减少了数据库I/O操作时间,从而提高了效率. 相似文献
5.
6.
关联规则挖掘是从事务数据库中发现大量数据中项集之间存在的有意义的隐藏关系。本文探讨了关联规则挖掘如何应用于医保稽查工作,并论述了对Apriori算法进行的具有针对性的改进。 相似文献
7.
关联规则挖掘是数据挖掘研究领域中的一个重要任务,旨在挖掘事务数据库中有意义的关联。随着大量数据不停的收集和存储,从数据库中挖掘关联规则显得越来越有必要性,关联规则挖掘的Apriori算法是数据库挖掘的最经典算法并得到广泛应用,在介绍关联规则挖掘和Apriori算法的基础上,发现Apriori算法存在着产生候选项目集效率低和频繁扫描数据等缺点。综述了Apriori算法的主要优化方法,并指出了Apriori算法在实际中的应用领域,提出了未来Apriori算法的研究方向和应用发展趋势。 相似文献
8.
9.
数据挖掘中关联规则挖掘算法的改进及其应用 总被引:3,自引:0,他引:3
对数据挖掘技术中经典的关联规则挖掘算法Apriori和AprioriTid进行了分析,针对其中不足,提取两种算法的优点,给出了算法的改进,并在贵州电力综合数据平台中进行了应用分析。 相似文献
10.
分类规则挖掘的免疫算法 总被引:4,自引:0,他引:4
为了高效地从数据库中挖掘分类规则,提出了一种基于免疫算法的分类算法.该算法的核心思想为:对规则的前件进行固定长度编码,适应度函数的计算由分类规则的较小分类错误率、简洁性、一致性和训练实例的覆盖性构成,通过把适应度最小的个体作为先验知识来修改个体的某些分量的方法进行疫苗接种,并通过检测个体是否出现退化和模拟退火来实现免疫选择,同时还采用了基于信息增益的规则剪枝策略.在美国加州大学标准数据集中的5个数据集上将该算法与RISE和OCEC算法进行了实验比较,结果表明该算法不仅具有更快的收敛速度,而且获得了更高的预测准确率及更小的规则集。 相似文献
11.
介绍了以关联规则方式对商业销售中客户数据进行分析的方法,实际运用中以某商业网点化妆品销售中客户信息的数据集为例,针对销售客户信息的具体特点给出了一种改进的Apriori算法.实践表明,改进后的Apriori算法,可以减少无意义规则的产生,提高挖掘效率. 相似文献
12.
挖掘大型数据库中的Apriori算法及其改进 总被引:11,自引:2,他引:11
宋中山 《中南民族大学学报(自然科学版)》2003,22(1):54-57
指出了Apriori算法是一种有效的关联规则挖掘算法,分析和探讨了Apriori算法,并给出了该算法的实现思想,通过实例说明了算法的执行过程,提出了对Apriori算法进行改进的一些方法:散列、事务压缩、划分、选样及动态项集计数。使用这些技术提高了算法的效率。 相似文献
13.
湛德照 《五邑大学学报(自然科学版)》2009,23(2):64-68
以总结学生各门考试成绩内在联系规则为目的,构建事实星座模型对考试数据所组成的数据仓库进行描述,并采用关联规则挖掘方法中的Apriori算法,对数据仓库中的数据进行分阶处理,生成频繁数据集,发现了各门成绩潜藏的内在规则,得出了一门功课成绩的好坏是由多门功课学习成绩情况所决定的结论,该结论能为教育决策提供一定的依据. 相似文献
14.
一种提取关联规则的数据挖掘快速算法 总被引:8,自引:0,他引:8
提出了一种从大型数据库中挖掘关联规则的快速算法。该算法以典型的Apriori和DHP算法为基础,提出了中间检查点、等从项目类等概念,并对Apriori中的Apriori-gen算法进行了改进。结果表明,它较Apriori有明显的提高。 相似文献
15.
从分析布尔向量与项集支持度的相关性质人手,利用计算机的逻辑"与"运算的高效率性以及通过布尔向量计算项集支持度的简单性,提出了基于布尔向量的关联规则挖掘算法.该算法只需一次扫描数据库,无需候选项集和"剪枝"操作,极大地提高了算法的效率. 相似文献
16.
关联规则挖掘的AprioriTid算法的改进 总被引:1,自引:0,他引:1
关联规则挖掘是数据挖掘中常见的一种形式。高效地找出频繁项目集是关联规则挖掘的中心问题.文章在分析生成频繁项目集的AprioriTid算法的基础上,指出了算法中存在由于项目的重复存储而使数据量偏大的问题,提出并证明了“Ck—l中支持率小于minsupport的项目集在Ck-1中是无用的”的定理。并以此为依据改进了算法.实验表明,改进算法在缩小数据规模方面是行之有效的. 相似文献
17.
对基于商品分类信息的多层关联规则挖掘进行了深入研究,提出了一种改进的基于商品分类信息的多层关联规则挖掘算法,该算法可以有效提高其挖掘性能。 相似文献
18.
闫禹 《辽宁大学学报(自然科学版)》2006,33(3):273-275
从大量的商业客户购买信息中挖掘出有用的知识无疑具有重要的商业价值.以某商业单位化妆品顾客的购买信息为例介绍了在商业客户信息管理中如何有效地使用数据挖掘技术获得有效的决策信息的方法。 相似文献