首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
余本海  戴启润  施德恒  刘玉芳 《中国物理》2007,16(10):2962-2967
The density functional theory (B3LYP, B3P86) and the quadratic configuration-interaction method including single and double substitutions (QCISD(T), QCISD) presented in Gaussian03 program package are employed to calculate the equilibrium internuclear distance $R_{\rm e}$, the dissociation energy $D_{\rm e }$ and the harmonic frequency $\omega _{\rm e}$ for the $X{}^{1}\Sigma^{ + }_{\rm g}$ state of sodium dimer in a number of basis sets. The conclusion is gained that the best $R_{\rm e}$, $D_{\rm e}$ and $\omega _{\rm e}$ results can be attained at the QCISD/6-311G(3df,3pd) level of theory. The potential energy curve at this level of theory for this state is obtained over a wide internuclear separation range from 0.16 to 2.0~nm and is fitted to the analytic Murrell--Sorbie function. The spectroscopic parameters $D_{\rm e}$, $D_{0}$, $R_{\rm e}$, $\omega _{\rm e}$, $\omega _{\rm e}\chi _{\rm e}$, $\alpha _{\rm e}$ and $B_{\rm e}$ are calculated to be 0.7219~eV, 0.7135~eV, 0.31813~nm, 151.63~cm$^{ - 1}$, 0.7288~cm$^{ - 1}$, 0.000729~cm$^{ - 1}$ and 0.1449~cm$^{ - 1}$, respectively, which are in good agreement with the measurements. With the potential obtained at the QCISD/6-311G(3df,3pd) level of theory, a total of 63 vibrational states is found when $J=0$ by solving the radial Schr\"{o}dinger equation of nuclear motion. The vibrational level, corresponding classical turning point and inertial rotation constant are computed for each vibrational state. The centrifugal distortion constants ($D_{\upsilon }\, H_{\upsilon }$, $L_{\upsilon }$, $M_{\upsilon }$, $N_{\upsilon }$ and $O_{\upsilon })$ are reported for the first time for the first 31 vibrational states when $J=0$.  相似文献   

2.
薛军帅  郝跃  张进成  倪金玉 《中国物理 B》2010,19(5):57203-057203
Comparative study of high and low temperature AlN interlayers and their roles in the properties of GaN epilayers prepared by means of metal organic chemical vapour deposition on (0001) plane sapphire substrates is carried out by high resolution x-ray diffraction, photoluminescence and Raman spectroscopy. It is found that the crystalline quality of GaN epilayers is improved significantly by using the high temperature AlN interlayers, which prevent the threading dislocations from extending, especially for the edge type dislocation. The analysis results based on photoluminescence and Raman measurements demonstrate that there exist more compressive stress in GaN epilayers with high temperature AlN interlayers. The band edge emission energy increases from 3.423~eV to 3.438~eV and the frequency of Raman shift of $E_{2 }$(TO) moves from 571.3~cm$^{ - 1}$ to 572.9~cm$^{ - 1}$ when the temperature of AlN interlayers increases from 700~$^{\circ}$C to 1050~$^{\circ}$C. It is believed that the temperature of AlN interlayers effectively determines the size, the density and the coalescence rate of the islands, and the high temperature AlN interlayers provide large size and low density islands for GaN epilayer growth and the threading dislocations are bent and interactive easily. Due to the threading dislocation reduction in GaN epilayers with high temperature AlN interlayers, the approaches of strain relaxation reduce drastically, and thus the compressive stress in GaN epilayers with high temperature AlN interlayers is high compared with that in GaN epilayers with low temperature AlN interlayers.  相似文献   

3.
Equilibrium internuclear separations, harmonic frequencies and potential energy curves (PECs) of HCl($X^{1}\Sigma ^{ + })$ molecule are investigated by using the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in combination with a series of correlation-consistent basis sets in the valence range. The PECs are all fitted to the Murrell--Sorbie function, and they are used to accurately derive the spectroscopic parameters ($D_{\rm e}$, $D_{0}$, $\omega_{\rm e}\chi_{\rm e}$, $\alpha_{\rm e}$ and $B_{\rm e})$. Compared with the available measurements, the PEC obtained at the basis set, aug-cc-pV5Z, is selected to investigate the vibrational manifolds. The constants $D_{0}$, $D_{\rm e}$, $R_{\rm e}$, $\omega_{\rm e}$, $\omega_{\rm e}\chi_{\rm e}$, $\alpha_{\rm e}$ and $B_{\rm e}$ at this basis set are 4.4006~eV, 4.5845~eV, 0.12757~nm, 2993.33~cm$^{ - 1}$, 52.6273~cm$^{ - 1}$, 0.2981~cm$^{ - 1}$ and 10.5841~cm$^{ - 1}$, respectively, which almost perfectly conform to the available experimental results. With the potential determined at the MRCI/aug-cc-pV5Z level of theory, by numerically solving the radial Schr\"{o}dinger equation of nuclear motion in the adiabatic approximation, a total of 21 vibrational levels are predicted. Complete vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are reproduced, which are in excellent agreement with the available Rydberg--Klein--Rees data. Most of these theoretical vibrational manifolds are reported for the first time to the best of our knowledge.  相似文献   

4.
阎世英  鲍文胜 《中国物理》2007,16(12):3675-3680
The density functional theory (DFT)(b3p86) of Gaussian 03 has been used to optimize the structure of the Co$_{2}$ molecule, a transition metal element molecule. The result shows that the ground state for the Co$_{2}$ molecule is a 7-multiple state, indicating a spin polarization effect in the Co$_{2}$ molecule. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state is not mingled with wavefunctions of higher-energy states. So for the ground state of Co$_{2}$ molecule to be a 7-multiple state is the indicative of spin polarization effect of the Co$_{2}$ molecule, that is, there exist 6 parallel spin electrons in a Co$_{2}$ molecule. The number of non-conjugated electrons is the greatest. These electrons occupy different spacial orbitals so that the energy of the Co$_{2}$ molecule is minimized. It can be concluded that the effect of parallel spin in the Co$_{2}$ molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell--Sorbie potential functions with the parameters for the ground state and the other states of the Co$_{2}$ molecule are derived. The dissociation energy $De$ for the ground state of Co$_{2}$ molecule is 4.0489eV, equilibrium bond length $R_{\rm e}$ is 0.2061~nm, and vibration frequency $\omega _\e $ is 378.13~cm$^{ - 1}$. Its diatomic molecule force constants $f_2$, $f_3$, and $f_4$ are 2.4824~aJ$\cdot$nm$^{ - 2}$, -7.3451~aJ$\cdot$nm$^{ - 3}$, and 11.2222~aJ$\cdot$nm$^{ - 4 }$respectively(1~aJ=$10^{-18}$~J). The other spectroscopic data for the ground state of Co$_{2}$ molecule $\omega_{\e}\chi _{\e}$, $B_{\e}$, and $\alpha_{\e}$ are 0.7202~cm$^{-1}$, 0.1347~cm$^{-1 }$, and 2.9120$\times $ 10$^{-1}$~cm$^{-1}$ respectively. And $\omega_{\e}\chi _{\e}$ is the non-syntonic part of frequency, $B_{\e}$ is the rotational constant, $\alpha_{\e}$ is revised constant of rotational constant for non-rigid part of Co$_2$ molecule.  相似文献   

5.
胡爱斌  徐秋霞 《中国物理 B》2010,19(5):57302-057302
Ge and Si p-channel metal--oxide--semiconductor field-effect-transistors (p-MOSFETs) with hafnium silicon oxynitride (HfSiON) gate dielectric and tantalum nitride (TaN) metal gate are fabricated. Self-isolated ring-type transistor structures with two masks are employed. W/TaN metal stacks are used as gate electrode and shadow masks of source/drain implantation separately. Capacitance--voltage curve hysteresis of Ge metal--oxide--semiconductor (MOS) capacitors may be caused by charge trapping centres in GeO7340Q, 7325http://cpb.iphy.ac.cn/CN/10.1088/1674-1056/19/5/057302https://cpb.iphy.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=111774Ge substrate, transistor, HfSiON, hole mobilityProject supported by the National Basic Research Program of China (Grant No.~2006CB302704).Ge and Si p-channel metal--oxide--semiconductor field-effect-transistors (p-MOSFETs) with hafnium silicon oxynitride (HfSiON) gate dielectric and tantalum nitride (TaN) metal gate are fabricated. Self-isolated ring-type transistor structures with two masks are employed. W/TaN metal stacks are used as gate electrode and shadow masks of source/drain implantation separately. Capacitance--voltage curve hysteresis of Ge metal--oxide--semiconductor (MOS) capacitors may be caused by charge trapping centres in GeO$_{x}$ ($1Ge;substrate;transistor;HfSiON;hole;mobilityGe and Si p-channel metal-oxide-semiconductor field-effect-transistors(p-MOSFETs) with hafnium silicon oxynitride(HfSiON) gate dielectric and tantalum nitride(TaN) metal gate are fabricated.Self-isolated ring-type transistor structures with two masks are employed.W/TaN metal stacks are used as gate electrode and shadow masks of source/drain implantation separately.Capacitance-voltage curve hysteresis of Ge metal-oxide-semiconductor(MOS) capacitors may be caused by charge trapping centres in GeOx(1 < x < 2).Effective hole mobilities of Ge and Si transistors are extracted by using a channel conductance method.The peak hole mobilities of Si and Ge transistors are 33.4 cm2/(V.s) and 81.0 cm2/(V.s),respectively.Ge transistor has a hole mobility 2.4 times higher than that of Si control sample.  相似文献   

6.
Interaction potential of the SiD(X2Π) radical is constructed by using the CCSD(T) theory in combination with the largest correlation-consistent quintuple basis set augmented with the diffuse functions in the valence range. Using the interaction potential, the spectroscopic parameters are accurately determined. The present D0, De, Re, ωe, αe and Be values are of 3.0956 eV, 3.1863 eV, 0.15223 nm, 1472.894 cm-1, 0.07799 cm-1 and 3.8717 cm-1, respectively, which are in excellent agreement with the measurements. A total of 26 vibrational states is predicted when J=0 by solving the radial Schro¨dinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J=0 are reported for the first time, which are in good accord with the available experiments. The total and various partial-wave cross sections are calculated for the elastic collisions between Si and D atoms in their ground states at 1.0×10-11–1.0×10-3 a.u. when the two atoms approach each other along the SiD(X2Π) potential energy curve. Four shape resonances are found in the total elastic cross sections, and their resonant energies are of 1.73×10-5, 4.0×10-5, 6.45×10-5 and 5.5×10-4 a.u., respectively. Each shape resonance in the total elastic cross sections is carefully investigated. The results show that the shape of the total elastic cross sections is mainly dominated by the s partial wave at very low temperatures. Because of the weakness of the shape resonances coming from the higher partial waves, most of them are passed into oblivion by the strong s partial-wave elastic cross sections.  相似文献   

7.
Absorption spectra of β -carotene in 31 solvents are measured in ambient conditions. Solvent effects on the 0--0 band energy, the bandwidth, and the transition moment of the S0 → S2 transition are analysed. The discrepancies between published results of the solvent effects on the 0--0 band energy are explained by taking into account microscopic solute-solvent interactions. The contributions of polarity and polarizability of solvents to 0--0 band energy and bandwidth are quantitatively distinguished. The 0--0 transition energy of the S2 state at the gas phase is predicted to locate between 23000 and 23600~cm-1.  相似文献   

8.
This paper investigates the effects of concentration on the crystalline structure, the morphology, and the charge carrier mobility of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs). The RR-P3HT FETs with RR-P3HT as an active layer with different concentrations of RR-P3HT solution from 0.5~wt% to 2~wt% are prepared. The results indicate that the performance of RR-P3HT FETs improves drastically with the increase of RR-P3HT weight percentages in chloroform solution due to the formation of more microcrystalline lamellae and bigger nanoscale islands. It finds that the field-effect mobility of RR-P3HT FET with 2~wt% can reach 5.78× 10^-3~cm2/Vs which is higher by a factor of 13 than that with 0.5~wt%. Further, an appropriate thermal annealing is adopted to improve the performance of RR-P3HT FETs. The field-effect mobility of RR-P3HT FETs increases drastically to 0.09~cm2/Vs by thermal annealing at 150~℃, and the value of on/off current ratio can reach 10^4.  相似文献   

9.
A 7.8-$\mu $m surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet--Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22{\%} and a low threshold gain of 10~cm$^{ - 1}$. Using a {$\pi $} phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.  相似文献   

10.
Tushagu Abudouwufu 《中国物理 B》2022,31(4):40704-040704
Copper ion conducting solid electrolyte Rb$_{4}$Cu$_{16}$I$_{6.5}$Cl$_{13.5 }$ was prepared by means of mechano-chemical method. The structure and morphology of the powder was investigated by x-ray diffraction and scanning electron microscopy. The grain size was estimated to be 0.2-0.9 μm and the ionic conductivity at room temperature was approximately 0.206 S/cm. The solid electrolyte Rb$_{4}$Cu$_{16}$I$_{6.5}$Cl$_{13.5 }$ was exploited for copper ion beam generation. The copper ion emission current of several nA was successfully obtained at acceleration voltages of 15 kV and temperature of 197 $^\circ$C in vacuum of 2.1$\times10^{-4}$ Pa. A good linear correlation between the logarithmic ion current $(\log I)$ and the square root of the acceleration voltage ($U_{\rm acc}$) at high voltage range was obtained, suggesting the Schottky emission mechanism in the process of copper ion beam generation.  相似文献   

11.
杨恢东  苏中义 《中国物理》2006,15(6):1374-1378
The role of hydrogen in hydrogenated microcrystalline silicon ($\mu $c-Si:H) thin films in deposition processes with very high frequency plasma-enhanced chemical vapour deposition (VHF-PECVD) technique have been investigated in this paper. With \textit{in situ} optical emission spectroscopy (OES) diagnosis during the fabrication of $\mu $c-Si:H thin films under different plasma excitation frequency $\nu _{\rm e }$ (60MHz--90MHz), the characteristic peak intensities ($I_{{\rm SiH}^*}$, $I_{{\rm H}\alpha^*}$ and $I_{{\rm H}\beta ^*}$) in SiHVHF-PECVD技术 氢化微晶硅 光发射光谱 薄膜学VHF-PECVD technique, hydrogenated microcrystalline silicon, role of hydrogen, optical emission spectroscopyProject supported by the Natural Science Foundation of Guangdong Province, China (Grant No 05300378), the State Key Development Program for Basic Research of China (Grant Nos G2000028202 and G2000028203) and the Program on Natural Science of Jinan University, Guangzhou, China (Grant No 51204056).2005-11-252005-11-252006-01-05The role of hydrogen in hydrogenated microcrystalline silicon (μc-Si:H) thin films in deposition processes with very high frequency plasma-enhanced chemical vapour deposition (VHF-PECVD) technique have been investigated in this paper. With in situ optical emission spectroscopy (OES) diagnosis during the fabrication of μc-Si:H thin films under different plasma excitation frequency Ve (60MHz-90MHz), the characteristic peak intensities (IsiH*, IHα* and IHβ* ) in SiH4+H2 plasma and the ratio of (IHα* + IHβ* ) to IsiH* were measured; all the characteristic peak intensities and the ratio (IHα* + IHβ* )/IsiH* are increased with plasma excitation frequency. It is identified that high plasma excitation frequency is favourable to promote the decomposition of SiH4+H2 to produce atomic hydrogen and SiHx radicals. The influences of atomic hydrogen on structural properties and that of SiHx radicals on deposition rate of μc-Si:H thin films have been studied through Raman spectra and thickness measurements, respectively. It can be concluded that both the crystalline volume fraction and deposition rate are enhanced with the increase of plasma excitation frequency, which is in good accord with the OES results. By means of FTIR measurements, hydrogen contents of μc-Si:H thin films deposited at different plasma excitation frequency have been evaluated from the integrated intensity of wagging mode near 640 cm^-1. The hydrogen contents vary from 4% to 5%, which are much lower than those of μc-Si:H films deposited with RF-PECVD technique. This implies that μc-Si:H thin films deposited with VHF-PECVD technique usually have good stability under light-soaking.  相似文献   

12.
The comparison between single-point energy scanning (SPES) and geometry optimization (OPT) in determining the equilibrium geometry of the α^3∑u^+ state for ^7Li2 is made at numerous basis sets such as 6-311++G(2df), cc-PVTZ, 6-311++G(2df, p), 6-311G(3df,3pd), 6-311++G(2df,2pd), D95(3df,3pd), 6-311++G, DGDZVP, 6-311++G(3df,2pd), 6-311G(2df,2pd), D95V++, CEP-121G, 6-311++G(d,p), 6-311++G(2df, pd) and 6-311++G(3df,3pd) in full active space using a symmetry-adapted-cluster/ symmetry-adapted-cluster configuration-interaction (SAC/SAC=CI) method presented in Gaussian03 program package. The difference of the equilibrium geometries obtained by SPES and by OPT is reported. Analyses show that the results obtained by SPES are more reasonable than those obtained by OPT. We have calculated the complete potential energy curves at those sets over a wide internuclear distance range from about 3.0α0 to 37.0α0, and the conclusion is that the basis set cc-PVTZ is the most suitable one. With the potential obtained at ccopVTZ, the spectroscopic data (Te, De, D0, ωe,ωeХe, αe and Be) are computed and they are 1.006 eV, 338.71 cm^-1, 307.12 cm^-1, 64.88 cm^-1, 3.41 cm^-1, 0.0187 cm^-1 and 0.279 cm^-1, respectively, which are in good agreement with recent measurements. The total 11 vibrational states are found at J=0. Their corresponding vibrational levels and classical turning points are computed and compared with available RKR data, and good agreement is found. One inertial rotation constant (By) and six centrifugal distortion constants (Dr Hv, Lv, My, Nv, and Ov) are calculated. The scattering length is calculated to be -27.138α0, which is in good accord with the experimental data.  相似文献   

13.
Zeng Liu 《中国物理 B》2022,31(8):88503-088503
A 4$\times $4 beta-phase gallium oxide ($\beta $-Ga$_{2}$O$_{3}$) deep-ultraviolet (DUV) rectangular 10-fingers interdigital metal-semiconductor-metal (MSM) photodetector array of high photo responsivity is introduced. The Ga$_{2}$O$_{3}$ thin film is prepared through the metalorganic chemical vapor deposition technique, then used to construct the photodetector array via photolithography, lift-off, and ion beam sputtering methods. The one photodetector cell shows dark current of 1.94 pA, photo-to-dark current ratio of 6$\times $10$^{7}$, photo responsivity of 634.15 A$\cdot$W$^{-1}$, specific detectivity of 5.93$\times $10$^{11}$ cm$\cdot$Hz$^{1/2}\cdot$W$^{-1}$ (Jones), external quantum efficiency of 310000%, and linear dynamic region of 108.94 dB, indicating high performances for DUV photo detection. Furthermore, the 16-cell photodetector array displays uniform performances with decent deviation of 19.6% for photo responsivity.  相似文献   

14.
肖颖  戴长建  秦文杰 《中国物理 B》2010,19(6):63202-063202
An isolated-core-excitation (ICE) scheme and stepwise excitation are employed to study the highly excited states of the europium atom. The bound europium spectrum with odd parity in a region of 42400--43500~cm^{ - 1} is measured, from which spectral information on 38 transitions, such as level position and relative intensity, can be deduced. Combined with information about excitation calibration and the error estimation process, the selection rules enable us to determine the possible values of total angular momentum J for the observed states. The autoionization spectra of atomic europium, belonging to the 4f^{7}6p{nl} (l=0, 2) configurations, are systematically investigated by using the three-step laser resonance ionization spectroscopy (RIS) approach. With the ICE scheme, all the experimental spectra of the autoionizing states have nearly symmetric profiles whose peak positions and widths can be easily obtained. A comparison between our results and those from the relevant literature shows that our work not only confirms many reported states, but also discovers 14 bound states and 16 autoionizing states.  相似文献   

15.
Experiments on a ball milled mixture with a 1:1 molar ratio of LiNH2 and LiH with a small amount(1 mol %) of Ti nano,TiCl3 and TiO nano 2 have revealed a superior catalytic effect on Li-N-H hydrogen storage materials.In the x-ray diffraction profiles,no trace of Ti nano,TiCl3 and TiO nano 2 was found in these doped composites,by which we deduced that Ti atoms enter LiNH2 by partial element substitution.A first-principles plane-wave pseudopotential method based on density functional theory has been used to investigate the catalytic effects of Ti catalysts on the dehydrogenating properties of LiNH2 system.The results show that Ti substitution can reduce the dehydrogenation reaction activation energy of LiNH2 and improve the dehydrogenating properties of LiNH2.Based on the analysis of the density of states and overlap populations for LiNH2 before and after Ti substitution,it was found that the stability of the system of LiNH2 is reduced,which originates from the increase of the valence electrons at the Fermi level(EF) and the decrease of the highest occupied molecular orbital(HOMO)-lowest unoccupied molecular orbital(LUMO) gap(△EH-L) near E F.The catalytic effect of Ti on the dehydrogenating kinetics of LiNH2 may be attributed to the reduction of average populations between N-H per unit bond length(nm-1),which leads to the reduction of the chemical bond strength of N-H.  相似文献   

16.
《中国物理 B》2021,30(5):58101-058101
The interface state of hydrogen-terminated(C–H) diamond metal–oxide–semiconductor field-effect transistor(MOSFET) is critical for device performance. In this paper, we investigate the fixed charges and interface trap states in C–H diamond MOSFETs by using different gate dielectric processes. The devices use Al_2O_3 as gate dielectrics that are deposited via atomic layer deposition(ALD) at 80℃ and 300℃, respectively, and their C–V and I–V characteristics are comparatively investigated. Mott–Schottky plots(1/C~2–VG) suggest that positive and negative fixed charges with low density of about 1011 cm~(-2) are located in the 80-℃-and 300-℃ deposition Al_2O_3 films, respectively. The analyses of direct current(DC)/pulsed I–V and frequency-dependent conductance show that the shallow interface traps(0.46 e V–0.52 e V and0.53 e V–0.56 e V above the valence band of diamond for the 80-℃ and 300-℃ deposition conditions, respectively) with distinct density(7.8 × 10~(13) e V~(-1)·cm~(-2)–8.5 × 10~(13) e V-1·cm~(-2) and 2.2 × 1013 e V~(-1)·cm~(-2)–5.1 × 10~(13) e V~(-1)·cm~(-2) for the80-℃-and 300-℃-deposition conditions, respectively) are present at the Al_2O_3/C–H diamond interface. Dynamic pulsed I–V and capacitance dispersion results indicate that the ALD Al_2O_3 technique with 300-℃ deposition temperature has higher stability for C–H diamond MOSFETs.  相似文献   

17.
Growth of strongly textured $\mathrm{FeCO}_{3}$ thin films on substrates was achieved with ultrashort-pulsed laser deposition using 810-nm, 46-fs ablation pulses. The crystallinity and composition were verified with X-ray diffraction and Raman spectroscopy. Using Mössbauer spectroscopy, it is shown that the deposited $\mathrm{FeCO}_{3}$ thin films possess the film quality required for application in research of nuclear quantum optics. It is found that a relatively low substrate temperature is crucial for growing a strongly textured film of $\mathrm{FeCO}_{3}$ while avoiding decomposition of $\mathrm{FeCO}_{3}$ into $\mathrm{Fe}_{2}\mathrm{O}_{3}$ and $\mathrm{CO}_{2}$ . This supports the importance of the use of ultrashort-pulsed laser deposition in providing adatoms with high mobility for attaining good crystallinity. The surface morphology was characterized by surface profilometry, scanning electron microscopy and atomic force microscopy. It is found to be significantly affected by changing the ablation laser parameters, including laser fluence, pulse duration, and on-target spot size. The results show that the peak deposition flux must be below approximately 0.03 nm/pulse in order to grow a flat film.  相似文献   

18.
Titanium oxide cluster cations $\mathrm{Ti}_{x}\mathrm{O}_{y}^{+}$ are produced in a molecular beam by combining laser ablation of titanium with the supersonic expansion of oxygen into vacuum. The size distribution of the clusters produced is analyzed by time-of-flight reflectron mass spectrometry. The stable clusters appearing in the mass spectrum can be described by the general formula $(\mathrm{TiO})_{m}(\mathrm{TiO}_{2})_{n}(\mathrm{O}_{2})_{k}^{+}$ (with m,n=0,1,2,?? and k=0,1). Additionally, collision-induced dissociation studies of mass selected clusters colliding with Kr atoms in a gas cell have been performed. The results show that the clusters lose neutral O2, TiO and/or (TiO2) n units, and the remaining charged fragments are those with the lowest ionization potentials. From these results the fragmentation cross section of the selected clusters is obtained.  相似文献   

19.
Island-growth of SiCGe films on SiC   总被引:1,自引:0,他引:1       下载免费PDF全文
李连碧  陈治明  林涛  蒲红斌  李青民  李佳 《中国物理》2007,16(11):3470-3474
SiCGe ternary alloys have been grown on SiC by hot-wall low-pressure chemical vapour deposition. It has been found that the samples cxhibit an island configuration, and the island growth of SiCGe epilayer depends on the processing parameters such as the growth temperature. When the growth temperature is comparatively low, the epilayer has two types of islands: onc is spherical island; another is cascading triangular island. With the increase of the growth temperature, the islands change from spherical to cascading triangular mode. The size and density of the islands depend on the growth duration and GeH4 flow-rate. A longer growth time and a larger GeH4 flow-rate can increase the size and density of the island in thc initial stage of the epitaxy. In our case, The optimal growth for a high density of uniform islands occurred at a growth temperature of 1100℃ for l-minute growth, with 10 SCCM GeH4, resulting in a narrow size distribution (about 30nm diameter) and high density (about 3.5 ×10^10 dots/cm2). The growth follows Stranski- Krastanov modc (2D to 3D modc), both of the islands and the 2D growth layer have face-centred cubic structure, and the critical thickness of the 2D growth layer is only 2.5 nm.[第一段]  相似文献   

20.
The effect of metal-to-oxide grain boundary layer in $ {\text{Ni}} - {\text{BaCe}}_{{0.8}} {\text{Y}}_{{0.2}} {\text{O}}_{{3 - \delta }} $ (BCY) cermet membrane on hydrogen permeation was studied by applying the different size of oxide grain on Ni-BCY membranes. Two types of cermet membranes having different grain size of oxide were prepared by using different starting particle size of oxide powder. The hydrogen flux of coarse-oxide-grain membrane showed higher flux than that of small-oxide-grain membrane. It was understood that the negative potential at metal-to-oxide grain boundary, reference to the bulk oxide ( $ \phi _{0} < \phi _{\infty } = 0 $ ), was developed, and the accumulation of the effectively positively charged protons may occur at the grain boundary layer (space charge layer), which may result in providing highly conductive proton path by shifting the charge neutrality condition from $ {\left[ {OH^{ \bullet }_{O} } \right]} = {\left[ {Y^{/}_{{Ce}} } \right]} $ to $ {\left[ {OH^{ \bullet }_{O} } \right]} = n $ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号