首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper(II) nitrate trihydrate has been successfully dehydrated in lithium nitrate-potassium nitrate eutectic at 140°C. At 300°C it commenced reaction as a Lux-Flood acid precipitating copper(II) oxide. With potassium iodide it reacted at 140°C to form copper(I) iodide and iodine but at 180°C the insoluble product was a mixture of copper(I) iodide and copper(II) oxide. With powdered silver a violent reaction occurred at 160°C, yielding silver(I) cations, nitrogen dioxide and copper(II) oxide. The stoichiometries of these reactions have been established and some reaction pathways suggested. Metallic silver was found to react to a much larger extent with a Lux-Flood acid (pyrosulphate) in solution than with nitrogen dioxide giving support to the nitryl cation as the acidic species in nitrate melts.  相似文献   

2.
The thermal behavior and crystal transformation of poly(p-benzamide) are reported. Modification I contains both solvent (N,N-dimethylacetamide) and LiCl in its crystal lattice. Modification II is likely to form a complex crystal with LiCl, whereas crystalline modification III contains neither solvent nor LiCl in its unit cell. The crystal transformation temperature from modification I to II is 214°C, and the crystal–nematic transition temperatures of modification II and III are 475 and 544°C, respectively. Modification III can be obtained from II by heating above 475°C and cooling, or by washing with water. It can also be obtained from modification I by washing with water and annealing.  相似文献   

3.
The state diagrams (T-x) of the systems Ag2Te-ZnTe(I) and Ag2Te-Zn(II) are offered on the ground of data obtained by differential thermal analysis, X-ray phase analysis, microstructural analysis and measurements of the density and the microhardness of samples synthesized. The systems studied are quasibinary sections of the ternary system Ag-Zn-Te. System I is characterized by two eutectic and three eutectoidal non-variant equilibria as well as by an intermediate compound Ag2ZnTe2, which melts congruently at 880°C. The latter exists in the range from 120 to 880°C in two polymorphic modifications (Tʅ→β=515°C). System II is characterized by one eutectic, two eutectoidal and one peritectic nonvariant equilibria, boundary solid solutions on the ground of Ag2Te and Zn and one intermediate phase of the composition Ag4Zn3Te2, which melts congruently at 880°C.  相似文献   

4.
Precise melting and crystallization temperatures of extended-chain and folded-chain crystals of form I and folded-chain crystals of form II poly(vinylidene fluoride) under high pressure have been obtained by microdifferential thermal analysis (DTA). Upon heating at pressures above 4000 kg/cm2, the micro-DTA thermogram of form II crystallized from the melt at atmospheric pressure shows melting of the form II structure and the melting of the folded-chain and extended-chain crystals of form I, formed through recrystallization processes. These features were clarified by supplemental methods. The bandwidth seen in electron micrographs of the extended-chain crystal of form I obtained by crystallization under high pressure was in the range of 1500 to 2000 Å. At atmospheric pressure, the extended-chain crystal of form I melted at 207°C, approximately 17°C higher than the folded-chain crystal of form I and 31°C higher than the folded-chain crystal of form II.  相似文献   

5.
Nylon 66 films exhibiting form I melting behavior show the γ mechanical relaxation at ?140°C. Samples which have form II melting behavior do not show this relaxation. The γ relaxation disappears when material having form I behavior is converted to material having form II behavior by annealing or by cold drawing. The form I and form II types of melting behavior are also found in poly(ethylene terephthalate); the interconversions and thermal behavior of the forms are analogous to the nylon 66 case. In poly(ethylene terephthalate), the β relaxation at ?40 to ?60°C is present only when form I melting behavior is found. Conversion to form II melting behavior by annealing or drawing (80°C) again causes the relaxation to disappear. No β relaxation was found in amorphous polymer. The γ dispersion in nylon 66 and the β dispersion in poly(ethylene terephthalate) can therefore be associated with the crystalline structure responsible for form I melting behavior. Form I melting behavior has been associated with foldedchain crystals based on previous work. It is therefore postulated that the γ dispersion in nylon 66 and the β dispersion in poly(ethylene terephthalate) are associated with motions in the chain folds. This assignment is not inconsistent with the change in the γ dispersion of nylon 66 with the number of backbone CH2 units, since these will affect the fold structure.  相似文献   

6.
Low molecular weight poly(ethylene terephthalate) samples were crystallized isothermally at 120–245°C from both the amorphous state and the melt. Isothermal annealing of these polymers at 215°C provided polymers which exhibited multiple melting peaks in thermal analysis, referred to as form I and form II, as assigned by Bell and Dumbleton. In these samples the peak temperature of the form II melting endotherm and the average crystallite size are dependent on the temperature of initial crystallization. This result requires a mechanism for retaining some structural feature during the conversion from morphological form I to form II. DSC thermograms obtained at varying heating rates on samples showing only form II endotherms support the assignment of superheating as the cause of the shift to higher peak temperatures with increasing heating rate.  相似文献   

7.
8.
Wang  Songlin  Wang  Qian  Kai  Yao 《Cellulose (London, England)》2022,29(3):1637-1646

Cellulose nanocrystals (CNCs) were first isolated from microcrystalline cellulose (MCC) by p-toluene sulfonic acid (p-TsOH) hydrolysis. Cellulose II nanocrystal (CNC II) and cellulose III nanocrystal (CNC III) were then formed by swelling the obtained cellulose I nanocrystal (CNC I) in concentrated sodium hydroxide solutions and ethylenediamine (EDA) respectively. The properties of CNC I, CNC II and CNC III were subjected to comprehensive characterization by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The results indicated that CNC I, CNC II and CNC III obtained in this research had high crystallinity index and good thermal stability. The degradation temperatures of the resulted CNC I, CNC II and CNC III were 300 °C, 275 °C and 242 °C, respectively. No ester bonds were found in the resulting CNCs. CNCs prepared in this research also had large aspect ratio and high negative zeta potential.

  相似文献   

9.
By means of high-temperature electrospinning process, syndiotactic polypropylene (sPP) nanofibers with an average diameter of 127 nm were obtained using a rotating disc as a collector. The aligned fibers were subjected to progressive heating for fiber melting. During heating, structural evolution of the sPP nanofibers was investigated in situ by means of two-dimensional wide-angle and small-angle X-ray scattering with synchrotron radiation sources. It was found that the as-spun fibers consist of the antichiral form I (9 %), mesophase (31 %), and amorphous phase (60 %), in the absence of isochiral form II. Upon heating, the mesophase started to melt and completely disappeared at 90 °C. The melting of the mesophase directly produced amorphous chains at 35–60 °C, and brought up the isochiral form II at low temperatures (60–70 °C), as well as the antichiral form I at high temperatures (70–110 °C). These events were in accordance with the DSC heating curve, which exhibited a small endotherm centered at 52 °C for the mesophase melting, followed by a shallow and broad exotherm associated with two phase-transition events, i.e., the crystal reorganization and the crystallization of supercooled liquid. The former is likely due to the solid–solid transition of meso→II phase as suggested by Lotz et al. (Macromolecules 31:9253, 1998), and the latter is relevant with crystallization of amorphous chains to develop the thermodynamic stable form I phase at high temperatures.  相似文献   

10.
The title compounds, C20H25N2O2S+·I?, (I), and C29H25BrN2O2S, (II), respectively, both crystallize in space group P. The pyrrole ring subtends an angle with the sulfonyl group of 33.6° in (I) and 21.5° in (II). The phenyl ring of the sulfonyl substituent makes a dihedral angle with the best plane of the indole moiety of 81.6° in (I) and 67.2° in (II). The lengthening or shortening of the C—N bond distances in both compounds is due to the electron‐withdrawing character of the phenyl­sulfonyl group. The S atoms are in distorted tetrahedral configurations. The molecular structures are stabilized by C—H?O and C—H?I interactions in (I), and by C—H?O and C—H?N interactions in (II).  相似文献   

11.
Malonylmethyl radical I [· CH2CH(COOEt)2] and its thioester analogue II [· CH2CH(COOEt) (COSEt)] were generated by standard photolytic and thermolytic methods from perester and bromo precursors. The structures of I and II were examined by ESR spectroscopy and found to exist in preferred conformations. However, no indication for their rearrangement by 1,2-shift of either an ethoxycarboxyl or (ethylthio)carbonyl group to the corresponding succinyl radicals III and IV , respectively, was found at temperatures below ? 40°C. At higher temperatures of up to 140°C, the search for malonylmethyl → succinyl rearrangement was examined by thorough-product analysis of the perester decomposition. There is evidence for the rearrangement of the radical I to III by photolysis and of the radical II to IV by thermolysis at 130°C in chlorobenzene to only a small extent.  相似文献   

12.
Five crystal polymorphs of the herbicide metazachlor (MTZC) were characterized by means of hot stage microscopy, differential scanning calorimetry, IR- and Raman spectroscopy as well as X-ray powder diffractometry. Modification (mod.) I, II and III° can be crystallized from solvents and the melt, respectively, whereas the unstable mod. IV and V crystallize exclusively from the super-cooled melt. Based on the results of thermal analysis and solvent mediated transformation studies, the thermodynamic relationships among the polymorphic phases of metazachlor were evaluated and displayed in a semi-schematic energy/temperature-diagram. At room temperature, mod. III° (T fus =76°C, Δfus H III =26.6 kJ mol-1) is the thermodynamically stable form, followed by mod. II (T fus =80°C, Δfus H II =23.0 kJ mol-1) and mod. I (T fus =83°C, Δfus H II=19.7 kJ mol-1). These forms are enantiotropically related showing thermodynamic transition points at ~55°C (T trs, III/II), ~60°C (T trs, III/I) and ~63°C (T trs, II/I). Thus mod. I is the thermodynamically stable form above 63°C, mod. III° below 55°C and mod. II in a small window between these temperatures. Mod. IV (T fus =72-74°C, Δfus H II =18.7 kJ mol-1) and mod. V (T fus =65°C) are monotropically related to each other as well as to all other forms. The metastable mod. I and II show a high kinetic stability. They crystallize from solvents, and thus these forms can be present in commercial samples. Since metazachlor is used as an aqueous suspension, the use of the metastable forms is not advisable because of a potential transformation to mod. III°. This may result in problematic formulations, due to caking and aggregation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The phase transition behavior of a thermotropic liquid crystalline poly(aryl ether ketone) synthesized by nucleophilic substitution reactions of 4,4′‐biphenol (BP), and chlorohydroquinone (CH) with 1,4‐bis(4‐fluorobenzoyl)benzene (BF) has been investigated by differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). The copolymer exhibits multiple first order phase transitions, which are associated with crystal‐to‐smectic liquid crystal transition and smectic liquid crystal‐to‐isotropic transition. When the cooling rate is low (< 10°C/min), only stable crystal form I is formed. With the cooling rate being high (>20°C/min), the metastable crystal form II is formed, which always coexists with form I. The liquid crystalline phase plays an important role in the formation of metastable phase form II.  相似文献   

14.
The structure and phase transitions in poly[bis-(2,2,3,3-tetrafluoropropoxy)phosphazene] have been studied by differential scanning calorimetry (DSC) and x-ray diffraction. Two crystalline phases and one mesomorphic phase are found, denoted I, II, and III, respectively. These phases convert reversibly one into the other on heating and cooling. The Phase I–Phase II transition occurs in a temperature range from 5 to 30°C whereas the Phase II mesophase (Phase III) transition proceeds above 80°C. Heats of transitions are measured to be about 29.0 J/g and 3.6 J/g, respectively. Crystalline Phase I is characterized by a monoclinic unit cell with the parameters: α = 24.4 Å, b = 9.96 Å, c = 4.96 Å, γ = 123°. The axes of both chains, traversing the unit cell, are directed along the “c” axis, the main chains having cis-trans conformation. Phase I is the common crystalline structure for the main chain and side chains. The structure of Phase II is controlled mainly by packing of the side chains. Transition of Phase II into mesomorphic Phase III is accompanied with distortion of packing of the side chains. Only regular packing of the main chains of macromolecules in the plane perpendicular to their axes exists in Phase III. Mesomorphic phase III is stable up to the degradation temperature of the polymer. A significant effect of stress on the Phase II–III transition in oriented samples was found.  相似文献   

15.

β-Xylosidases are critical for complete degradation of xylan, the second main constituent of plant cell walls. A minor β-xylosidase (BXYL II) from Penicillium janczewskii was purified by ammonium sulfate precipitation (30% saturation) followed by DEAE-Sephadex chromatography in pH 6.5 and elution with KCl. The enzyme presented molecular weight (MW) of 301 kDa estimated by size exclusion chromatography. Optimal activity was observed in pH 3.0 and 70–75 °C, with higher stability in pH 3.0–4.5 and half-lives of 11, 5, and 2 min at 65, 70, and 75 °C, respectively. Inhibition was moderate with Pb+2 and citrate and total with Cu+2, Hg+2, and Co+2. Partially purified BXYL II and BXYL I (the main β-xylosidase from this fungus) were individually immobilized and stabilized in glyoxyl agarose gels. At 65 °C, immobilized BXYL I and BXYL II presented half-lives of 4.9 and 23.1 h, respectively, therefore being 12.3-fold and 33-fold more stable than their unipuntual CNBr derivatives (reference mimicking soluble enzyme behaviors). During long-term incubation in pH 5.0 at 50 °C, BXYL I and BXYL II glyoxyl derivatives preserved 85 and 35% activity after 25 and 7 days, respectively. Immobilized BXYL I retained 70% activity after 10 reuse cycles of p-nitrophenyl-β-D-xylopyranoside hydrolysis.

  相似文献   

16.
Investigations on the Thermal Degradation of Keggin-Heteropolytungstoacids by Means of High-temperature X-ray-Powder-Photographs and I.R. Spectroscopy The termal degradations of 12-tungstoboric acid ( I ), 12-tungstosilicic acid ( II ) and 12-tungstiphosphoric acid ( III ), recorded with a high temperature powder camera (heating rate: 4°C/min, atmosphere: air) are observed at 420, 530, and 620°C, respectively. These doped WO3-phases are stable at room temperature and forms either a monoclinic distorted lattice ( I ) or a tetragonal one ( II and III ). Above 850°C in all cases a tetragonal phase is formed with a diagram typical for pure WO3. Investigation by means of I.R. spectroscopy (250—1300 cm?1) are in agreement with those of X-ray results.  相似文献   

17.
The TG and DTA (DSC) curves of the yellow and red forms of mercury(II) oxide, mercury(II) chloride, bromide and iodide, and mercury(I) iodide are reported. A lower initial procedural dissociation temperature, 400°C, was observed for the yellow form of HgO versus 460°C for the red form. This lower value is consistent with the postulate of a smaller particle size for the yellow form. Although only sublimation behavior was indicated in the DSC curves of the mercury(II) halides, by the use of sealed-tube DTA, fusion transitions were also observed. These data may be of unusual importance in ecological and environmental problems.  相似文献   

18.
The thermoanalytical curves of (C6H5)4AsCl (I) and (C6H5)4PCl (II) were generated simultaneously by using a Netzsch simultaneous thermal analyser 409 under static air and dynamic argon atmospheres. The ranges of thermal stability of I and II were found to be 145–310°C and 137–365°C, respectively, and their melting points to be 261 and 278°C. The DTA profiles of I and II differ and can be used for their distinction.  相似文献   

19.
Niobocene trimethylacetate Cp2Nb(OOCCMe3) (I) does not react with usual n-donors (pyridine and triphenylphosphine), but readily adds a π-acceptor molecule of diphenylacetylene (tolane) in benzene to form Cp2Nb(OOCCMe3)(π-Ph2C2) · 0.5 C6H6 (II). The structures of the diamagnetic complexes I and II have been determined by an X-ray diffraction study. These molecules represent wedge-like sandwiches wit dihedral angles between cyclopentadienyl ligands equal to 44.4 and 50.7°, and average NbC distances of 2.39 and 2.44 Å, respectively. The bisector plane of I contains the chelate trimethylacetate group (NbO bond lenghts 2.23 and 2.24 Å) and that of II contains the coordinated tolane molecule and the oxygen atom of the terminal trimethylacetate ligand (NbO 2.16, NbC 2.18 and 2.19, CC 1.29 Å, PhCC angles 141 and 146°). An unusually large splitting of OCO stretching frequencies is observed in the IR spectrum of I (1652?1305 = 347 cm?1). Structural characteristics of the coordinated CC triple bond in II are similar to those found in Cp(π-Ph4C4)Nb(CO)(π-Ph2C2) studied earlier. The role played by the NbIII lone pair in I and II is discussed.  相似文献   

20.
In the structures of each of the title compounds, [CrBr(C6H5O2)(NO)2], (I), and [CrBr(C12H9O)(NO)2], (II), one of the nitrosyl groups is located at a site away from the exocyclic carbonyl C atom of the cyclopentadienyl (Cp) ring, with twist angles of 174.5 (3) and 172.5 (1)°. The observed orientation is surprising, since the NO group is expected to be situated trans to an electron‐rich C atom in the ring. The organic carbonyl plane is turned away from the Cp ring plane by 5.6 (8) and 15.2 (3)°in (I) and (II), respectively. The exocyclic C—C bond in (I) is bent out of the Cp ring plane towards the Cr atom by 2.8 (3)°, but is coplanar with the Cp ring in (II); the angle is 0.1 (1)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号