首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider one-loop tensor and scalar integrals, which occur in a massless quantum field theory, and we report on the implementation into a numerical program of an algorithm for the automated computation of these one-loop integrals. The number of external legs of the loop integrals is not restricted. All calculations are done within dimensional regularization.Received: 21 February 2005, Revised: 31 March 2005, Published online: 13 May 2005  相似文献   

2.
A set of one-loop vertex and box tensor integrals with massless internal particles has been obtained directly without any reduction method to scalar integrals. The results with one or two massive external lines for the vertex integral and zero or one massive external lines for the box integral are shown in this report. Dimensional regularization is employed to treat any soft and collinear (IR) divergence. A series expansion of tensor integrals with respect to an extra space-time dimension for the dimensional regularization is also given. The results are expressed by very short formulas in a manner suitable for a numerical calculation. Arrival of the final proofs: 25 November 2005  相似文献   

3.
Building on the open-loop algorithm we introduce a new method for the automated construction of one-loop amplitudes and their reduction to scalar integrals. The key idea is that the factorisation of one-loop integrands in a product of loop segments makes it possible to perform various operations on-the-fly while constructing the integrand. Reducing the integrand on-the-fly, after each segment multiplication, the construction of loop diagrams and their reduction are unified in a single numerical recursion. In this way we entirely avoid objects with high tensor rank, thereby reducing the complexity of the calculations in a drastic way. Thanks to the on-the-fly approach, which is applied also to helicity summation and for the merging of different diagrams, the speed of the original open-loop algorithm can be further augmented in a very significant way. Moreover, addressing spurious singularities of the employed reduction identities by means of simple expansions in rank-two Gram determinants, we achieve a remarkably high level of numerical stability. These features of the new algorithm, which will be made publicly available in a forthcoming release of the OpenLoops program, are particularly attractive for NLO multi-leg and NNLO real–virtual calculations.  相似文献   

4.
Using the Feynman parameter method, we have calculated in an elegant manner a set of one-loop box scalar integrals with massless internal lines, but containing 0, 1, 2, or 3 external massive lines. To treat IR divergences (both soft and collinear), the dimensional regularization method has been employed. The results for these integrals, which appear in the process of evaluating one-loop -point integrals and in subdiagrams in QCD loop calculations, have been obtained for arbitrary values of the relevant kinematic variables and are presented in a simple and compact form. Received: 8 March 2001 / Published online: 18 May 2001  相似文献   

5.
We summarize and discuss important mathematical foundations concerning the dimensional method. To this end we carefully discuss the assumptions as well as the derived fundamental statements. We define and investigate the uniqueness of the ?μνστ tensor in n dimensions and, related to this, the uniqueness of γ5. Furthermore, we develop an algorithm which allows the calculation of a set of scalar multi-loop integrals with masses in a systematic way. To demonstrate and test the algorithm we rederive a set of scalar integrals which are important in calculations at the one and two loop level.  相似文献   

6.
The alternative dynamics of loop quantum cosmology is examined by the path integral formulation.We consider the spatially flat FRW models with a massless scalar field,where the alternative quantizations inherit more features from full loop quantum gravity.The path integrals can be formulated in both timeless and deparameterized frameworks.It turns out that the effective Hamiltonians derived from the two different viewpoints are equivalent to each other.Moreover,the first-order modified Friedmann equations are derived and predict quantum bounces for contracting universe,which coincide with those obtained in canonical theory.  相似文献   

7.
Four‐Dimensionally Regularized/Renormalized (FDR) integrals play an increasingly important role in perturbative loop calculations. Thanks to them, loop computations can be performed directly in four dimensions and with no ultraviolet counterterms. In this paper I prove that integration‐by‐parts (IBP) identities based on simple integrand differentiation can be used to find relations among multi‐loop FDR integrals. Since algorithms based on IBP are widely applied beyond one loop, this result represents a decisive step forward towards the use of the FDR approach in multi‐loop calculations.  相似文献   

8.
Based on the vectorial Rayleigh-Sommerfeld integrals, the general propagation integral expressions for on-axis nonparaxial vectorial spherical wave diffracted at a circular aperture are derived. The results are strict integral formulae for the light field on the axis, valid for either strong or weak focusing, both far and near zones, and for the systems in which the size of the aperture is comparable to or smaller than the wavelength. Thus, it has the advantage for general application. For convergent spherical waves, the numerical calculation results are compared with those obtained by using the integral formulae of scalar paraxial approximation and scalar nonparaxial approximation, confirming the consistence in the situation of scalar approximation.  相似文献   

9.
Starting from the vectorial Rayleigh--Sommerfeld integrals, the free-space propagation expressions for vectorial Hermite--Laguerre--Gaussian (HLG) beams beyond the paraxial approximation are derived. The far-field expressions and the scalar paraxial results are given as special cases of our general expressions. The intensity distributions of vectorial nonparaxial HLG beams are studied and illustrated with numerical examples.  相似文献   

10.
A comprehensive study is performed of general massive, scalar, two-loop Feynman diagrams with three external legs. Algorithms for their numerical evaluation are introduced and discussed, numerical results are shown for all different topologies and comparisons with analytical results, whenever available, are performed. An internal cross-check, based on alternative procedures, is also applied. The analysis of infrared divergent configurations, as well as the treatment of tensor integrals, will be discussed in two forthcoming papers.  相似文献   

11.
We consider field diffeomorphisms in the context of real scalar field theories. Starting from free field theories we apply non-linear field diffeomorphisms to the fields and study the perturbative expansion for the transformed theories. We find that tree-level amplitudes for the transformed fields must satisfy BCFW type recursion relations for the S-matrix to remain trivial. For the massless field theory these relations continue to hold in loop computations. In the massive field theory the situation is more subtle. A necessary condition for the Feynman rules to respect the maximal ideal and co-ideal defined by the core Hopf algebra of the transformed theory is that upon renormalization all massive tadpole integrals (defined as all integrals independent of the kinematics of external momenta) are mapped to zero.  相似文献   

12.
A recently derived approach to the tensor reduction of 5-point one-loop Feynman integrals expresses the tensor coefficients by scalar 1-point to 4-point Feynman integrals completely algebraically. In this Letter we derive extremely compact algebraic expressions for the contractions of the tensor integrals with external momenta. This is based on sums over signed minors weighted with scalar products of the external momenta. With these contractions one can construct the invariant amplitudes of the matrix elements under consideration, and the evaluation of one-loop contributions to massless and massive multi-particle production at high energy colliders like LHC and ILC is expected to be performed very efficiently.  相似文献   

13.
The consistency of loop regularization (LORE) method is explored in multiloop calculations. A key concept of the LORE method is the introduction of irreducible loop integrals (ILIs) which are evaluated from the Feynman diagrams by adopting the Feynman parametrization and ultraviolet-divergence-preserving (UVDP) parametrization. It is then inevitable for the ILIs to encounter the divergences in the UVDP parameter space due to the generic overlapping divergences in the four-dimensional momentum space. By computing the so-called αβγ integrals arising from two-loop Feynman diagrams, we show how to deal with the divergences in the parameter space with the LORE method. By identifying the divergences in the UVDP parameter space to those in the subdiagrams, we arrive at the Bjorken–Drell analogy between Feynman diagrams and electrical circuits. The UVDP parameters are shown to correspond to the conductance or resistance in the electrical circuits, and the divergence in Feynman diagrams is ascribed to the infinite conductance or zero resistance. In particular, the sets of conditions required to eliminate the overlapping momentum integrals for obtaining the ILIs are found to be associated with the conservations of electric voltages, and the momentum conservations correspond to the conservations of electrical currents, which are known as the Kirchhoff laws in the electrical circuits analogy. As a practical application, we carry out a detailed calculation for one-loop and two-loop Feynman diagrams in the massive scalar ? 4 theory, which enables us to obtain the well-known logarithmic running of the coupling constant and the consistent power-law running of the scalar mass at two-loop level. Especially, we present an explicit demonstration on the general procedure of applying the LORE method to the multiloop calculations of Feynman diagrams when merging with the advantage of Bjorken–Drell’s circuit analogy.  相似文献   

14.
New types of relationships between Feynman integrals are presented. It is shown that Feynman integrals satisfy functional equations connecting integrals with different values of scalar invariants and masses. A method is proposed for obtaining such relations. The derivation of functional equations for one-loop propagator- and vertex-type integrals is given. It is shown that a propagator-type integral can be written as a sum of two integrals with modified scalar invariants and one propagator massless. The vertex-type integral can be written as a sum over vertex integrals with all but one propagator massless and one external momenta squared equal to zero. It is demonstrated that the functional equations can be used for the analytic continuation of Feynman integrals to different kinematic domains.  相似文献   

15.
The non-singlet quark structure function is calculated in the leading logarithm approximation in an axial gauge with n2 = 0, the light-cone gauge. The choice n2 = 0 leads to a simple identity for loop integrals involving the extra n · k denominators. We compare the results graph by graph with both Feynman gauge QCD and a scalar gluon theory. The leading diagrams are the same “rainbow” diagrams as for the case of the scalar theory.The techniques are also applied to quark-quark scattering at large transverse momentum. The leading diagrams have the same dressed ladder-form factor structure.  相似文献   

16.
王培杰  吴国祯 《物理学报》2005,54(6):2545-2551
研究了两个振子耦合的Henon-Heiles体系的周期轨迹与量子化问题.结果表明,周期轨迹的 作用量积分与体系的能量有着简单的线性关系.可以利用那些是整数值的周期轨迹的作用量 积分对不可积体系进行半经典量子化.由周期轨迹的物理内涵出发,揭示混沌体系的残余周 期轨迹具有与量子化有关的性质.这对于认识和理解经典力学与量子体系的联系关系及其物 理内涵有着深刻而重要的意义. 关键词: 周期轨迹 半经典量子化 混沌  相似文献   

17.
By virtue of a new scalar potential function and Hankel integral transforms, the wave propagation analysis of a thermoelastic transversely isotropic half-space is presented under buried loading and heat flux. The governing equations of the problem are the differential equations of motion and the energy equation of the coupled thermoelasticity theory. Using a scalar potential function, these coupled equations have been uncoupled and a six-order partial differential equation governing the potential function is received. The displacements, temperature, and stress components are obtained in terms of this potential function in cylindrical coordinate system. Applying the Hankel integral transform to suppress the radial variable, the governing equation for potential function is reduced to a six-order ordinary differential equation with respect to z. Solving that equation, the potential function and therefore displacements, temperature, and stresses are derived in the Hankel transformed domain for two regions. Using inversion of Hankel transform, these functions can be obtained in the real domain. The integrals of inversion Hankel transform are calculated numerically via Mathematica software. Our numerical results for displacement and temperature are calculated for surface excitations and compared with the results reported in the literature and a very good agreement is achieved.  相似文献   

18.
Feynman loop integrals are a key ingredient for the calculation of higher order radiation effects, and are responsible for reliable and accurate theoretical prediction. We improve the efficiency of numerical integration in sector decomposition by implementing a quasi-Monte Carlo method associated with the CUDA/GPU technique. For demonstration we present the results of several Feynman integrals up to two loops in both Euclidean and physical kinematic regions in comparison with those obtained from FIESTA3. It is shown that both planar and non-planar two-loop master integrals in the physical kinematic region can be evaluated in less than half a minute with O(10~(-3))accuracy, which makes the direct numerical approach viable for precise investigation of higher order effects in multiloop processes, e.g. the next-to-leading order QCD effect in Higgs pair production via gluon fusion with a finite top quark mass.  相似文献   

19.
We show how to interpret the scalar Feynman integrals which appear when reducing tensor integrals as scalar Feynman integrals coming from certain nice matroids.  相似文献   

20.
The solution of the equation of radiative transfer for a participating medium generally results in the evaluation of integrals involving a product of an exponential integral function or an exponential with a polynomial. Although expressions are available in the literature for the evaluation of such integrals, which appear to be structurally easy and simple to program, they are found to be not so accurate for certain parameters involved. To overcome such difficulties, alternative, computationally more accurate, analytic expressions are presented, and numerical techniques for their evaluation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号