首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An ab initio explicit solvation valence bond (VB) method, called VBEFP, is presented. The VBEFP method is one type of QM/MM approach in which the QM part of system is treated within the ab initio valence bond scheme and the solvent water molecules are accounted by the effective fragment potential (EFP) method, which is a polarized force field approach developed by Gordon et al. (J. Chem. Phys. 1996, 105, 1968). This hybrid method enables one to take the first-solvation shell and heterogeneous solvation effects into account explicitly with VB wave function. Therefore, the nature of chemical bonding and the mechanism of chemical reactions with explicit solvent environments can be explored at the ab inito VB level. In this paper, the hydrated metal-ligand complexes [M(2+)L](H(2)O)(n) (M(2+): Mg(2+), Zn(2+); L: NH(3), CH(2)O) are studied by the VBEFP method. Resonance energy and bond order are computed, and the influence of the solvent coordination and hydrogen bonding to the metal-ligand bonding are explored in the paper.  相似文献   

3.
A method that combines quantum mechanics (QM), typically a solute, the effective fragment potential (EFP) discrete solvent model, and the polarizable continuum model is described. The EFP induced dipoles and polarizable continuum model (PCM) induced surface charges are determined in a self-consistent fashion. The gradients of these two energies with respect to molecular coordinate changes are derived and implemented. In general, the gradients can be formulated as simple electrostatic forces and torques among the QM nuclei, electrons, EFP static multipoles, induced dipoles, and PCM induced charges. Molecular geometry optimizations can be performed efficiently with these gradients. The formulas derived for EFPPCM can be generally applied to other combined molecular mechanics and continuum methods that employ induced dipoles and charges.  相似文献   

4.
5.
A robust approach for dealing with electrostatic interactions for spherical boundary conditions has been implemented in the QM/MM framework. The development was based on the generalized solvent boundary potential (GSBP) method proposed by Im et al. [J. Chem. Phys. 114, 2924 (2001)], and the specific implementation was applied to the self-consistent-charge density-functional tight-binding approach as the quantum mechanics (QM) level, although extension to other QM methods is straightforward. Compared to the popular stochastic boundary-condition scheme, the new protocol offers a balanced treatment between quantum mechanics/molecular mechanics (QM/MM) and MM/MM interactions; it also includes the effect of the bulk solvent and macromolecule atoms outside of the microscopic region at the Poisson-Boltzmann level. The new method was illustrated with application to the enzyme human carbonic anhydrase II and compared to stochastic boundary-condition simulations using different electrostatic treatments. The GSBP-based QM/MM simulations were most consistent with available experimental data, while conventional stochastic boundary simulations yielded various artifacts depending on different electrostatic models. The results highlight the importance of carefully treating electrostatics in QM/MM simulations of biomolecules and suggest that the commonly used truncation schemes should be avoided in QM/MM simulations, especially in simulations that involve extensive conformational samplings. The development of the GSBP-based QM/MM protocol has opened up the exciting possibility of studying chemical events in very complex biomolecular systems in a multiscale framework.  相似文献   

6.
The combination of quantum mechanics (QM) with molecular mechanics (MM) offers a route to improved accuracy in the study of biological systems, and there is now significant research effort being spent to develop QM/MM methods that can be applied to the calculation of relative free energies. Currently, the computational expense of the QM part of the calculation means that there is no single method that achieves both efficiency and rigor; either the QM/MM free energy method is rigorous and computationally expensive, or the method introduces efficiency-led assumptions that can lead to errors in the result, or a lack of generality of application. In this paper we demonstrate a combined approach to form a single, efficient, and, in principle, exact QM/MM free energy method. We demonstrate the application of this method by using it to explore the difference in hydration of water and methane. We demonstrate that it is possible to calculate highly converged QM/MM relative free energies at the MP2/aug-cc-pVDZ/OPLS level within just two days of computation, using commodity processors, and show how the method allows consistent, high-quality sampling of complex solvent configurational change, both when perturbing hydrophilic water into hydrophobic methane, and also when moving from a MM Hamiltonian to a QM/MM Hamiltonian. The results demonstrate the validity and power of this methodology, and raise important questions regarding the compatibility of MM and QM/MM forcefields, and offer a potential route to improved compatibility.  相似文献   

7.
A new version of the QM/MM method, which is based on the effective fragment potential (EFP) methodology [Gordon, M. et al., J Phys Chem A 2001, 105, 293] but allows flexible fragments, is verified through calculations of model molecular systems suggested by different authors as challenging tests for QM/MM approaches. For each example, the results of QM/MM calculations for a partitioned system are compared to the results of an all-electron ab initio quantum chemical study of the entire system. In each case we were able to achieve approximately similar or better accuracy of the QM/MM results compared to those described in original publications. In all calculations we kept the same set of parameters of our QM/MM scheme. A new test example is considered when calculating the potential of internal rotation in the histidine dipeptide around the C(alpha)bond;C(beta) side chain bond.  相似文献   

8.
9.
10.
One of the central aspects of biomolecular recognition is the hydrophobic effect, which is experimentally evaluated by measuring the distribution coefficients of compounds between polar and apolar phases. We use our predictions of the distribution coefficients between water and cyclohexane from the SAMPL5 challenge to estimate the hydrophobicity of different explicit solvent simulation techniques. Based on molecular dynamics trajectories with the CHARMM General Force Field, we compare pure molecular mechanics (MM) with quantum-mechanical (QM) calculations based on QM/MM schemes that treat the solvent at the MM level. We perform QM/MM with both density functional theory (BLYP) and semi-empirical methods (OM1, OM2, OM3, PM3). The calculations also serve to test the sensitivity of partition coefficients to solute polarizability as well as the interplay of the quantum-mechanical region with the fixed-charge molecular mechanics environment. Our results indicate that QM/MM with both BLYP and OM2 outperforms pure MM. However, this observation is limited to a subset of cases where convergence of the free energy can be achieved.  相似文献   

11.
In quantum-mechanical/molecular-mechanical (QM/MM) treatment of chemical reactions in condensed phases, one solves the electronic Schrodinger equation for the solute (or an active site) under the electrostatic field from the environment. This Schrodinger equation depends parametrically on the solute nuclear coordinates R and the external electrostatic potential V. This fact suggests that one may use R and V as natural collective coordinates for describing the entire system, where V plays the role of collective solvent variables. In this paper such an (R,V) representation of the QM/MM canonical ensemble is described, with particular focus on how to treat charge transfer processes in this representation. As an example, the above method is applied to the proton-coupled electron transfer of a ubiquinol analog with phenoxyl radical in acetonitrile solvent. Ab initio free-energy surfaces are calculated as functions of R and V using the reference interaction site model self-consistent field method, the equilibrium points and the minimum free-energy crossing point are located in the (R,V) space, and then the kinetic isotope effects (KIEs) are evaluated approximately. The results suggest that a stiffer proton potential at the transition state may be responsible for unusual KIEs observed experimentally for related systems.  相似文献   

12.
This article reports a combined quantum mechanics/molecular mechanics (QM/MM) investigation on the acid hydrolysis of cellulose in water using two different models, cellobiose and a 40‐unit cellulose chain. The explicitly treated solvent molecules strongly influence the conformations, intramolecular hydrogen bonds, and exoanomeric effects in these models. As these features are largely responsible for the barrier to cellulose hydrolysis, the present QM/MM results for the pathways and reaction intermediates in water are expected to be more realistic than those from a former density functional theory (DFT) study with implicit solvent (CPCM). However, in a qualitative sense, there is reasonable agreement between the DFT/CPCM and QM/MM predictions for the reaction mechanism. Differences arise mainly from specific solute–solvent hydrogen bonds that are only captured by QM/MM and not by DFT/CPCM. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Excited-state quantum mechanics/molecular mechanics molecular dynamics simulations are performed, to examine the solvent effects on the fluorescence spectra of aqueous formaldehyde. For that purpose, the analytical energy gradient has been derived and implemented for the linear-response time-dependent density functional theory (TDDFT) combined with the effective fragment potential (EFP) method. The EFP method is an efficient ab initio based polarizable model that describes the explicit solvent effects on electronic excitations, in the present work within a hybrid TDDFT/EFP scheme. The new method is applied to the excited-state MD of aqueous formaldehyde in the n-π* state. The calculated π*→n transition energy and solvatochromic shift are in good agreement with other theoretical results.  相似文献   

14.
量子力学和分子力学组合方法及其应用   总被引:4,自引:0,他引:4  
QM/MM组合方法在研究凝聚态中的化学反应及生物大分子的结构和活性之间的关系等方面已取得重要进展。这一方法的要点在于将大体系配分成几部分,根据需要对不同部分进行不同级别的处理,因此既利用了量子力学的精确性,又利用了分子力学的高效性。对QM/MM组合理论及其一些最新进展作一简单介绍,并以最近进行了几个工作为例说明QM、MM组合方法的应用。  相似文献   

15.
To accurately determine the reaction path and its energetics for enzymatic and solution-phase reactions, we present a sequential sampling and optimization approach that greatly enhances the efficiency of the ab initio quantum mechanics/molecular mechanics minimum free-energy path (QM/MM-MFEP) method. In the QM/MM-MFEP method, the thermodynamics of a complex reaction system is described by the potential of mean force (PMF) surface of the quantum mechanical (QM) subsystem with a small number of degrees of freedom, somewhat like describing a reaction process in the gas phase. The main computational cost of the QM/MM-MFEP method comes from the statistical sampling of conformations of the molecular mechanical (MM) subsystem required for the calculation of the QM PMF and its gradient. In our new sequential sampling and optimization approach, we aim to reduce the amount of MM sampling while still retaining the accuracy of the results by first carrying out MM phase-space sampling and then optimizing the QM subsystem in the fixed-size ensemble of MM conformations. The resulting QM optimized structures are then used to obtain more accurate sampling of the MM subsystem. This process of sequential MM sampling and QM optimization is iterated until convergence. The use of a fixed-size, finite MM conformational ensemble enables the precise evaluation of the QM potential of mean force and its gradient within the ensemble, thus circumventing the challenges associated with statistical averaging and significantly speeding up the convergence of the optimization process. To further improve the accuracy of the QM/MM-MFEP method, the reaction path potential method developed by Lu and Yang [Z. Lu and W. Yang, J. Chem. Phys. 121, 89 (2004)] is employed to describe the QM/MM electrostatic interactions in an approximate yet accurate way with a computational cost that is comparable to classical MM simulations. The new method was successfully applied to two example reaction processes, the classical SN2 reaction of Cl-+CH3Cl in solution and the second proton transfer step of the reaction catalyzed by the enzyme 4-oxalocrotonate tautomerase. The activation free energies calculated with this new sequential sampling and optimization approach to the QM/MM-MFEP method agree well with results from other simulation approaches such as the umbrella sampling technique with direct QM/MM dynamics sampling, demonstrating the accuracy of the iterative QM/MM-MFEP method.  相似文献   

16.
The performance of different link atom based frontier treatments in QM/MM simulations was evaluated critically with SCC-DFTB as the QM method. In addition to the analysis of gas-phase molecules as in previous studies, an important element of the present work is that chemical reactions in realistic enzyme systems were also examined. The schemes tested include all options available in the program CHARMM for SCC-DFTB/MM simulation, which treat electrostatic interactions due to the MM atoms close to the QM/MM boundary in different ways. In addition, a new approach, the divided frontier charge (DIV), has been implemented in which the partial charge associated with the frontier MM atom ("link host") is evenly distributed to the other MM atoms in the same group. The performance of these schemes was evaluated based on properties including proton affinities, deprotonation energies, dipole moments, and energetics of proton transfer reactions. Similar to previous work, it was found that calculated proton affinities and deprotonation energies of alcohols, carbonic acids, amino acids, and model DNA bases are very sensitive to the link atom scheme; the commonly used single link atom approach often gives error on the order of 15 to 20 kcal/mol. Other schemes give better and, on average, mutually comparable results. For proton transfer reactions, encouragingly, both activation barriers and reaction energies are fairly insensitive (within a typical range of 2-4 kcal/mol) to the link atom scheme due to error cancellation, and this was observed for both gas-phase and enzyme systems. Therefore, the effect of using different link atom schemes in QM/MM simulations is rather small for chemical reactions that conserve the total charge. Although the current study used an approximate DFT method as the QM level, the observed trends are expected to be applicable to QM/MM methods with use of other QM approaches. This observation does not mean to encourage QM/MM simulations without careful benchmark in the study of specific systems, rather it emphasizes that other technical details, such as the treatment of long-range electrostatics, tend to play a more important role and need to be handled carefully.  相似文献   

17.
The performance of the density functional theory (DFT)-based effective fragment potential (EFP) method is assessed using the S(N)2 reaction: Cl- + nH2O + CH3Br = CH3Cl + Br- + nH2O. The effect of the systematic addition of water molecules on the structures and relative energies of all species involved in the reaction has been studied. The EFP1 method is compared with second-order perturbation theory (MP2) and DFT results for n = 1, 2, and 3, and EFP1 results are also presented for four water molecules. The incremental hydration effects on the barrier height are the same for all methods. However, only full MP2 or MP2 with EFP1 solvent molecules are able to provide an accurate treatment of the transition state (TS) and hence the central barriers. Full DFT and DFT with EFP1 solvent molecules both predict central barriers that are too small. The results illustrate that the EFP1-based DFT method gives reliable results when combined with an accurate quantum mechanical (QM) method, so it may be used as an efficient alternative to fully QM methods in the treatment of larger microsolvated systems.  相似文献   

18.
19.
Combined quantum mechanics/molecular mechanics (QM/MM) modelling has the potential to answer fundamental questions about enzyme mechanisms and catalysis. Calculations using QM/MM methods can now predict barriers for enzyme-catalysed reactions with unprecedented, near chemical accuracy, i.e. to within 1 kcal/mol in the best cases. Quantitative predictions from first-principles calculations were only previously possible for very small molecules. At this level, quantitative, reliable predictions can be made about the mechanisms of enzyme-catalysed reactions. This development signals a new era of computational biochemistry.  相似文献   

20.
The implementation and validation of the adaptive buffered force (AdBF) quantum‐mechanics/molecular‐mechanics (QM/MM) method in two popular packages, CP2K and AMBER are presented. The implementations build on the existing QM/MM functionality in each code, extending it to allow for redefinition of the QM and MM regions during the simulation and reducing QM‐MM interface errors by discarding forces near the boundary according to the buffered force‐mixing approach. New adaptive thermostats, needed by force‐mixing methods, are also implemented. Different variants of the method are benchmarked by simulating the structure of bulk water, water autoprotolysis in the presence of zinc and dimethyl‐phosphate hydrolysis using various semiempirical Hamiltonians and density functional theory as the QM model. It is shown that with suitable parameters, based on force convergence tests, the AdBF QM/MM scheme can provide an accurate approximation of the structure in the dynamical QM region matching the corresponding fully QM simulations, as well as reproducing the correct energetics in all cases. Adaptive unbuffered force‐mixing and adaptive conventional QM/MM methods also provide reasonable results for some systems, but are more likely to suffer from instabilities and inaccuracies. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号