首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The effect of processing mesoporous silica thin films with supercritical CO2 immediately after casting is investigated, with a goal of using the penetration of CO2 molecules in the tails of fluorinated surfactant templates to tailor the final pore size. Well-ordered films with two-dimensional hexagonal close-packed pore structure are synthesized using a cationic fluorinated surfactant, 1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)pyridinium chloride, as a templating agent. Hexagonal mesopore structures are obtained for both unprocessed films and after processing the cast films in CO2 at constant pressure (69-172 bar) and temperature (25-45 degrees C) for 72 h, followed by traditional heat treatment steps. X-ray diffraction and transmission electron microscopy analysis reveal significant increases in pore size for all CO2-treated thin films (final pore diameter up to 4.22 +/- 0.14 nm) relative to the unprocessed sample (final pore diameter of 2.21 +/- 0.20 nm) before surfactant extraction. Similar pore sizes are obtained with liquid and supercritical fluid treatments over the range of conditions tested. These results demonstrate that combining the tunable solvent strength of compressed and supercritical CO2 with the "CO2-philic" nature of fluorinated tails allows one to use CO2 processing to control the pore size in ordered mesoporous silica films.  相似文献   

2.
Mesoporous titania-silica composite films with highly aligned cylindrical pores are prepared by the sol-gel method using a substrate with structural anisotropy. The strong alignment effect of a rubbing-treated polyimide film on a substrate provides a narrow alignment distribution in the plane of the film regardless of the fast condensation rate of titania precursors. The collapse of the mesostructure upon the surfactant removal is effectively suppressed by the reinforcement of the pore walls with silica by exposing the as-deposited film to a vapor of a silicon alkoxide. The existence of a silica layer on the titania pore wall is proved from the distributions of Ti and Si estimated by the elemental analysis in high resolution electron microscopy. The obtained mesoporous titania-silica composite film exhibits a remarkable birefringence reflecting the highly anisotropic mesoporous structure and the high refractive index of titania that forms the pore wall. The Δn value estimated from the optical retardation and the film thickness is larger than 0.06, which cannot be achieved with the conventional mesoporous silica films with uniaxially aligned mesoporous structure even though the alignment of the pores in the films is perfect. These inorganic films with mesoscopic structural anisotropy will find many applications in the field of optics as phase plates with high thermal/chemical/mechanical stabilities.  相似文献   

3.
《中国化学快报》2021,32(12):3696-3704
Drug delivery systems (DDS) are used to deliver therapeutic drugs to improve selectivity and reduce side effects. With the development of nanotechnology, many nanocarriers have been developed and applied to drug delivery, including mesoporous silica. Mesoporous silica nanoparticles (MSNs) have attracted a lot of attention for simple synthesis, biocompatibility, high surface area and pore volume. Based on the pore system and surface modification, gated mesoporous silica nanoparticles can be designed to realize on-command drug release, which provides a new approach for selective delivery of antitumor drugs. Herein, this review mainly focuses on the “gate keepers” of mesoporous silica for drug controlled release in nearly few years (2017–2020). We summarize the mechanism of drug controlled release in gated MSNs and different gated materials: inorganic gated materials, organic gated materials, self-gated drug molecules, and biological membranes. The facing challenges and future prospects of gated MSNs are discussed rationally in the end.  相似文献   

4.
The synthesis and characterization of alumina-mesoporous silica (alumina-MS) hybrid membranes are reported. The hybrids are formed using a variation of the evaporative-induced self-assembly (EISA) process reported by Hayward et al. (Langmuir 2004, 20, 5998) based on dip coating of an Anopore 200 nm membrane with a Brij-56/TEOS/HCl/H2O solution. Numerous analytical methods are used to probe both the hybrid material and the silica phase after dissolution of the Anopore substrate. Most importantly, He/N2 permeation measurements show that the effective pore size of the membrane can be tuned from 20 to 5 nm based on the number of dip-coating cycles used. The observed He/N2 permselectivity of 2.7 +/- 0.11 is nearly identical to the theoretical value obtained (2.65) assuming Knudsen diffusion dominates. The selectivity of these membranes is higher than that of most commercial "5 nm" membranes (2.29), which is ascribed to the lack of pinhole defects in the materials reported here. The hybrid membranes as well as the silica obtained after dissolution of the Anopore substrate have been characterized using scanning and transmission electron microscopy and X-ray diffraction. Those results indicate that the silica deposited in the Anopore membrane possesses uniform pores approximately 5 nm in size, consistent with the permeation studies. The current work presents an alternative approach to materials that possess many of the properties of mesoporous silica thin films (i.e., pores of controlled size and topology) without the difficulty of growing mesoporous silica thin films on porous supports.  相似文献   

5.
Novel mesostructured silica thin films were prepared on a Si substrate by a vapor-phase synthesis. Vapor of tetraethoxysilane (TEOS) was infiltrated into a surfactant film consisting of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. Nanophase transition from a lamellar structure to a two-dimensional cage structure of a silica-surfactant nanocomposite was found under vapor infiltration. The rearrangement into the cage structure implies high mobility of the silica-surfactant composites in solid phase. The silica thin films have two-dimensionally connected cagelike mesopores and are isotropic parallel to the film surface. The structure of pores of the films is advantageous for next-generation low-k films. The mesoporous structure has a large lattice parameter d of approximately 102 A, silica layer thickness of approximately 58 A, pillar diameter in the middle of approximately 60 A, pore size of approximately 72 A, BET surface area of approximately 729 m(2)/g, and pore volume of approximately 1.19 cm(3)/g. The films synthesized by the vapor infiltration show a lower concentration of residual Si-OH groups compared to the films prepared by a conventional sol-gel method. The films show high thermal stability up to 900 degrees C and high hydrothermal stability. This method is a simpler process than conventional sol-gel techniques and attractive for mass production of a variety of organic-inorganic composite materials and inorganic porous films.  相似文献   

6.
The penetration of compressed CO(2) in hydrocarbon and fluorocarbon regions of concentrated surfactant mesophases are interpreted from differences in the CO(2)-processed pore expansion of mesoporous silica thin films templated by three surfactants containing varying degrees of hydrocarbon and fluorocarbon functionality. Ordered silica thin films are synthesized for the first time using the 16-carbon (C(16)) partly fluorinated surfactant, 11,11,12,12,13,13,14,14,15,15,16,16,16-tridecafluorocetyl pyridinium bromide (HFCPB), as a templating agent. Silica films templated with surfactants containing a 8-carbon (C(8)) fluorocarbon tail (3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl pyridinium chloride (HFOPC)) and a 16-carbon (C(16)) hydrocarbon tail (cetyl pyridinium bromide (CPB)) and HFCPB (C(16)) are processed in compressed CO(2) (69-172 bar, 25 °C and 45 °C) during synthesis. CO(2) processing results in significant pore expansion for films templated with both fluorinated surfactants, while pore expansion is negligible for the hydrocarbon templated material suggesting that preferential CO(2) penetration occurs in the 'CO(2)-philic' fluorocarbon segments of the surfactant template. The effect of substrate surface energy on the final uniformity of the dip-coated films is studied by varying the substrate from unmodified glass to a fluorocarbon-capped substrate. The ability to create dip-coated thin films on low surface energy substrates through favorable interaction of surfactant template tail with the substrate surface functional groups is demonstrated.  相似文献   

7.
郭卓  郭彤  赵常礼  高云鹏  李莎 《无机化学学报》2010,26(11):1927-1933
制备了一个新的电极-聚苯胺掺杂介孔碳修饰电极(PANI-MC),并且研究了电极的电化学性质。在介孔分子筛SBA-15的孔道中沉积蔗糖,然后在氮气的保护下,1200℃热裂解,生成孔道规则排列的介孔碳(MC);XRD、N2吸附-脱附、TEM等方法表征了介孔碳的结构,用SEM表征了PANI-MC修饰电极的形貌。结果表明:复合电极膜与修饰前的聚苯胺膜形貌不同,与介孔碳形貌相似,介孔碳纳米微粒的大小清洗可辨,长度大约为20~40μm。复合电极循环伏安结果显示:峰电位向负电位方向移动,这可能是因为介孔碳的孔道结构阻碍了离子的转移。同时,还研究了复合电极对Cu2+的相应,表明:电极对低浓度的Cu2+有很好的线性相应,可以作为Cu2+的感应器。  相似文献   

8.
A family of mesoporous silica microspheres with fibrous morphology and different particle sizes ranging from about 400 to 900 nm has been successfully synthesized through a facile self-assembly process. The structural, morphological, and textural properties of the samples were well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), N(2) adsorption/desorption, and thermal gravimetry (TG). The results reveal that this silica-based mesoporous material exhibits excellent physical properties, including a fibrous spherical morphology, good thermal stability, large pore volume, high specific surface area and narrow size distribution. Additionally, the size and textural properties can be tuned by altering the silica precursor/template molar ratio. The formation and the self-assembly evolution process have also been proposed. The obtained materials were further used as a drug delivery carrier to investigate the in vitro drug release properties using doxorubicin (DOX) as a representative model drug. It was found that this kind of silica exhibits good biocompatibility and obvious sustained drug release properties, suggesting its potential application in biological fields.  相似文献   

9.
1 Introduction Since its first discovery in 1992[1,2], ordered mesoporous silica material with large pore size, high surface area, and high pore volume has attracted great attention for the potentially wide application  相似文献   

10.
Electrogenerated silica thin films exhibiting a regular hexagonal packing of vertically‐aligned mesopore channels are promising for preconcentration electroanalysis. This work demonstrates the critical role of film thickness on their sensing performance using paraquat as a model analyte, based on mesoporous silica films prepared by electrochemically assisted self‐assembly performed for various deposition times. Films prepared with too short synthesis times (<10 s) led to deposits covering partially the electrode surface and suffered from rather poor sensing performance. Then, uniformly deposited films were obtained (between 10 and 15 s), and sensitivity rose up by increasing deposition times, whereas some limitations started to occur with much thicker films (>15 s deposition times) as a result of less electrochemically accessible paraquat accumulated far away from the electrode surface and restricted mass transport through the whole film thickness. These limitations were also confirmed on the basis of multi‐layered mesoporous silica films, suggesting a behavior that might be typical for other types of film‐modified electrodes.  相似文献   

11.
Organically modified, ordered mesoporous silica films, which can provide hydrophobicity and low polarizability to the framework, were prepared using Brij-76 block copolymer as a template. Due to a fast condensation reaction of the silica precursor, mesostructured silica films were not properly synthesized. To circumvent this problem, a synthesis procedure was modified to provide an enhancement of pore periodicity through the incorporation of methyl ligands on the framework. The micropore volume was reduced, and the pore size was enlarged, as the concentration of the methyl ligands on the framework was increased. A mesophase transition from a two-dimensional hexagonal structure to a body-centered cubic (BCC) structure was observed according to the concentration of incorporated methyl ligands. The mechanical properties of the fabricated films were investigated according to the pore ordering and film density. The mechanical properties of the films with random pore geometry show a positive correlation between film density and elastic modulus. Meanwhile, the mechanical behavior of organically modified mesoporous silica films with periodic pore distribution represents a negative correlation within a certain density range, which is advantageous to the low-k materials. Especially, film with a low micropore volume fraction and BCC pore ordering is more applicable to a low-k material due to low dielectric constant and high mechanical strength.  相似文献   

12.
Ellipsometric porosimetry (EP) is a handy technique to characterize the porosity and pore size distribution of porous thin films with pore diameters in the range from below 1 nm up to 50 nm and for the characterization of porous low-k films especially. Atomic layer deposition (ALD) can be used to functionalize porous films and membranes, e.g., for the development of filtration and sensor devices and catalytic surfaces. In this work we report on the implementation of the EP technique onto an ALD reactor. This combination allowed us to employ EP for monitoring the modification of a porous thin film through ALD without removing the sample from the deposition setup. The potential of in situ EP for providing information about the effect of ALD coating on the accessible porosity, the pore radius distribution, the thickness, and mechanical properties of a porous film is demonstrated in the ALD of TiO(2) in a mesoporous silica film.  相似文献   

13.
In this work, a new type of naphthalene dye was synthesized for detecting nitro explosives in solution and mesoporous film system. The fluorescence quenching mechanism between dye and explosive was determined. For detecting nitro explosives in gas system, mesoporous silica films doped with this fluorescent dye were successfully fabricated using the sol–gel technology with different templates. Two-dimensional hexagonal structure mesoporous silica film was found sensitive to traces of nitroaromatic trinitrotoluene. When enlarging the pore size, to improve the sensitivity, a lower sensitivity was actually obtained. This can be explained by the small molecule diameter of the explosive and the relatively large surface area of the mesoporous films. The Brunauer–Emmett–Teller surface area can be enlarged by a suitable 3D pore channel structure so that the fluorescence quenching sensitivity is improved for the nitro aromatic compounds vapors. Optimizing the pore size and channel structure can therefore well improve the sensing efficiency in this system.  相似文献   

14.
This study investigated the optimization of mesoporous silica thin films by nanotexturing using oxygen plasma versus thermal oxidation. Calcination in oxygen plasma provides superior control over pore formation with regard to the pore surface and higher fidelity to the structure of the polymer template. The resulting porous film offers an ideal substrate for the selective partitioning of peptides from complex mixtures. The improved chemico-physical characteristics of porous thin films (pore size distribution, nanostructure, surface properties and pore connectivity) were systematically characterized with XRD, Ellipsometry, FTIR, TEM and N(2) adsorption/desorption. The enrichment of low molecular weight proteins captured from human serum on mesoporous silica thin films fabricated by both methodologies were investigated by comparison of their MALDI-TOF MS profiles. This novel on-chip fractionation technology offers advantages in recovering the low molecular weight peptides from human serum, which has been recognized as an informative resource for early diagnosis of cancer and other diseases.  相似文献   

15.
Near-critical CO2 in mesoporous silica studied by in situ FTIR spectroscopy   总被引:2,自引:0,他引:2  
Attenuated total reflection Fourier transform infrared spectroscopy was used to correlate the band shift of the nu2 vibrational band of carbon dioxide with the density of the fluid. Upon adsorption of CO2 on mesoporous silica and a nonporous SiO2 film, additional bands were detected due to interactions of CO2 with SiO2. Near the saturation pressure for the porous samples, the absorbance of the nu2 band increased strongly, which was concluded to be caused by liquidlike CO2 inside the pores. Integration of single-beam-sample-reference spectra between bulk CO2 and CO2 adsorbing on the mesoporous silica coated on one part of the internal reflection element revealed excess adsorption type isotherms with sharp maxima at 21 degrees C. A flatter curve shape could be observed at 25 degrees C, which allowed estimating the pore critical temperature. Moreover, the density of the fluid inside and outside the pores could be compared. Over the investigated ranges of pressure, temperature, and pore size, the results evidenced that the CO2 density was always higher in the silica pores than in the bulk, even under supercritical conditions. This has important consequences on the pressure dependence of dissolution power and diffusivity of fluids in mesoporous solids. An overview is given on the influences of fluid phase behavior in the bulk and in the pores at various conditions on solubility and diffusivity.  相似文献   

16.
The tailoring of porous silica thin films synthesized using perfluoroalkylpyridinium chloride surfactants as templating agents is achieved as a function of carbon dioxide processing conditions and surfactant tail length and branching. Well-ordered films with 2D hexagonal close-packed pore structure are obtained from sol-gel synthesis using the following cationic fluorinated surfactants as templates: 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-octyl)pyridinium chloride (HFOPC), 1-(3,3,4,4,5,5,6,6,7,8,8,8-dodecafluoro-7-trifluoromethyl -octyl)pyridinium chloride (HFDoMePC), and 1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-decyl)pyridinium chloride (HFDePC). Processing the sol-gel film with CO2 (69-172 bar, 25 and 45 degrees C) immediately after coating results in significant increases in pore diameter relative to the unprocessed thin films (increasing from 20% to 80% depending on surfactant template and processing conditions). Pore expansion increases with CO2 processing pressure, surfactant tail length, and surfactant branching. The varying degree of CO2 induced expansion is attributed to the solvation of the "CO2-philic" fluorinated tail and is interpreted from interfacial behavior of HFOPC, HFDoMePC, and HFDePC at the CO2-water interface.  相似文献   

17.
Mesoporous silica, which shows well-defined pore systems, tunable pore diameters (2-30 nm), narrow pore size distributions and high surface areas (>600 m(2) g(-1)), is frequently modified using different methodologies (including in situ and post-synthetic strategies) to introduce various chemical functionalities useful in applications like catalysis, separation, drug delivery, and sensing. This contribution aims to provide a critical overview of the various strategies to incorporate chemical functionalities in mesoporous silica highlighting the advantages of the in situ methods based on the bottom-up construction of mesoporous silica containing various chemical functionalities in its structure.  相似文献   

18.
Organically functionalized mesoporous silica films have been prepared by a novel synthetic procedure that involves spin-coating of mesostructured silica films and a vapor infiltration (VI) technique, using organosiloxanes, before the removal of surfactant. The VI-treated mesostructured films were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and a field emission scanning electron microscope (FE-SEM). Nitrogen adsorption/desorption measurements were performed using films attached with a silicon substrate. The XRD and FE-SEM measurements show that the mesochannel wall, densified and modified with organosilyl groups by the VI treatment, hardly contracts under calcination. FE-SEM observations for the films' cross section support the view that organosiloxane vapor is not deposited on the surface of the film. These results show that organosiloxane molecules penetrate the film and are selectively incorporated into the silica wall. Thus, hydrophobic mesoporous silica films can be synthesized without a reduction in pore size, a result that cannot be attained by conventional grafting and co-condensation methods. The excellent high porosity and hydrophobicity of the mesostructured composite films may be of advantage for next-generation low-k dielectric films.  相似文献   

19.
Yang P  Gai S  Lin J 《Chemical Society reviews》2012,41(9):3679-3698
In the past decade, non-invasive and biocompatible mesoporous silica materials as efficient drug delivery systems have attracted special attention. Great progress in structure control and functionalization (magnetism and luminescence) design has been achieved for biotechnological and biomedical applications. This review highlights the most recent research progress on silica-based controlled drug delivery systems, including: (i) pure mesoporous silica sustained-release systems, (ii) magnetism and/or luminescence functionalized mesoporous silica systems which integrate targeting and tracking abilities of drug molecules, and (iii) stimuli-responsive controlled release systems which are able to respond to environmental changes, such as pH, redox potential, temperature, photoirradiation, and biomolecules. Although encouraging and potential developments have been achieved, design and mass production of novel multifunctional carriers, some practical biological application, such as biodistribution, the acute and chronic toxicities, long-term stability, circulation properties and targeting efficacy in vivo are still challenging.  相似文献   

20.
We describe biodegradable mesoporous hybrid nanoparticles (NPs) in the presence of proteins and their applications for drug delivery. We synthesized oxamide phenylene‐based mesoporous organosilica nanoparticles (MON) in the absence of a silica source which had remarkably high organic content and high surface areas. Oxamide functions provided biodegradability in the presence of trypsin model proteins. MON displayed exceptionally high payloads of hydrophilic and hydrophobic drugs (up to 84 wt %), and a unique zero premature leakage without the pore capping, unlike mesoporous silica. MON were biocompatible and internalized into cancer cells for drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号