首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The autoxidation of cuprous copper in aqueous CH3CN is studied spectrophotometrically and by following O2-as well as H+-consumption. The rate of the reaction is greatly enhanced by the addition of chelating dicarboxylic acid anions such as oxalate and malonate, at low pH it increases proportional to H+-concentration. This is explained by proton attack on the coordinated O2-group in an oxygen adduct. The reaction is of first order with respect to [CuI] and [O2] and proceeds via one-electron steps.  相似文献   

2.
Quasi‐oscillations in [O2] were observed during the methylene blue catalyzed oxidation of D‐glucose by O2 in alkaline aqueous solutions. The kinetics of anaerobic oxidation of D‐glucose (GH) by methylene blue (MB+) was investigated in a closed system. The reaction was first order with respect to the concentration of methylene blue and the observed rate constant increased with GH concentration in a saturated mode. The oxidation proceeds via complex formation between GH and MB+ and the rate constant of the decay of the complex was determined. The oxidation process was also investigated under aerobic conditions and the reaction rates and reaction orders were determined by spectrophotometric measurements of the disappearance of MB+ and by amperometric determination of O2 consumption. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 463–468, 1999  相似文献   

3.
4.
Catalysis of oxidation of aminothiols by copper ions was studied depending on the structure of aminothiols and pH of the medium. The catalytic reaction proceeds in the inner coordination sphere of Cu+. At pH 7—9, oxidation of bidentate aminothiols involves reduction of O2 to H2O2. At pH 9—13, oxidation of chelating aminothiols is accompanied by reduction of O2 to H2O, whereas oxidation of weak-chelating aminothiols still proceeds by the former mechanism. In this process, the thiolate anions coordinated to the Cu+ ions lose one electron each and are oxidized to amino disulfides, which go from the inner sphere of the Cu+ complex into a solution. Procedures developed for the determination of amino disulfides, the chemiluminescence determination of H2O2 in the presence of aminothiols as luminescence quenchers, and a modified polarographic procedure for the determination of O2 allowed us to establish that oxidation of aminothiols is not accompanied by catalytic decomposition of H2O2 that formed.  相似文献   

5.
Reducibility of Cu supported on Al2O3, zeolite Y and silicoaluminophosphate SAPO-5 has been investigated in dependence on the Cu content using a method combining conventional temperature programmed reduction (TPR) by hydrogen with reoxidation in N2O followed by a second the so-called surface-TPR (s-TPR). The method enables discrimination and a quantitative estimation of the Cu oxidation states +2, +1 and 0. The quantitative results show that the initial oxidation state of Cu after calcination in air at 400 °C, independent on the nature of the support, is predominantly +2. Cu2+ supported on Al2O3 is quantitatively reduced by hydrogen to metallic Cu0. Comparing the TPR of the samples calcined in air and that of samples additionally pre-treated in argon reveals that in zeolite Y and SAPO-5 Cu2+ cations are stabilized as weakly and strongly forms. In both systems, strongly stabilized Cu2+ ions are not auto-reduced by pre-treatment in argon at 650 °C, but are reduced in hydrogen to form Cu+. The weakly stabilized Cu2+ ions, in contrast, may be auto-reduced by pre-treatment in argon at 650 °C forming Cu+ but are reduced in hydrogen to metallic Cu0.  相似文献   

6.
Compounds of the general formula [ORe(OR)Cl2(PPh3)2] and [ORe(OEt)Cl2(PPh3)(py)], where R=alkyl or aryl and py=a substituted pyridine, were synthesized and their voltammetric behaviour investigated. For the former, the electron-transfer mechanism was observed to be dependent on solvent. In dry MeCN, a quasi-reversible oxidation and a reduction followed by a chemical reaction was observed. There were indications of nucleophilic attack on electrochemically generated [ORe(OEt)Cl2(PPh3)2]+, forming an unstable species whose reduction potentials were strongly dependent on the identity of the nucleophile. Voltammetric and spectroscopic observations of the oxorhenium(V) alkoxypyridine complex indicate the pyridine to be labile in halogenated hydrocarbon solvents but not in Me2CO, MeCN, or CCl4. Electrochemical generation of [ORe(OEt)Cl2(PPh3)(ClxCyHz)]+ (x=1,2, or 3; y=1 or 2; z=2,3, or 4) appears to be followed by transfer of a hydrogen atom from the solvent to form [(HO)Re(OEt)Cl2(PPh3)]+. Various pyridine complexes of this type were preparedvia substitution reactions under mild conditions. Varying the reaction conditions allowed the synthesis oftrans-dioxotetrapyridyl complexes in excellent yield.  相似文献   

7.
Two Cu(II) complexes of (S)-2-[(N-benzylprolyl)amino]benzaldehyde oxime (L) were isolated. The complex Cu[(LH–1)(Cl)] is green, whereas Cu2(LH2)–2 is red-brown. The structure of these complexes was proved by elemental analysis, IR and UV spectroscopy. The average molecular masses ( ) of the complexes in ethanol were determined by precision ebulliometry. The concentration dependence of the values of these complexes is consistent with the existence of the following equilibria in ethanol: Cu[(LH–1)(Cl)] + EtOH Cu[(LH–1)(HOEt)]++Cl+ and [Cu2(LH–2)2] + EtOH 2[Cu(LH-–2)(HOEt)]. The equilibrium constants of these two reactions were determined. Both [Cu(LH–1)(Cl)] and [Cu2(LH–2)2] catalyze with equal efficiency the hydrolysis of 2-methyl-4-benzyl-5(4H)-oxazolone in aqueous solutions at a given pH. The UV spectra of both complexes in water at similar pH values are identical. Thus, both complexes must be interconvertible in aqueous solutions. Furthermore, the absence of any electrophoretically mobile particles in neutral aqueous buffers is an indication that the complexes [Cu2(LH–2)2] and [Cu(LH–2)(H2O)] are the predominant species in solution under these conditions.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2270–2275, October, 1991.  相似文献   

8.
The inner-sphere isomerization of the peroxo complexes of vanadium(V) with the general formula [VO6]? was studied using approximations based on the density functional theory (B3LYP/6-31G**) and the Møller-Plesset perturbation theory (MP2/6-31G**). It was found that the complex [V(=O)(ηO2)(O3)]? containing the O3 group as a bidentate ligand was the most stable isomer. The transition state region of a rear-rangement of the triperoxo complex [V(ηO2)3]? into [V(=O)(ηO2)(O3)]? was localized. It was found that the activation barrier (~30 kcal/mol) was mainly due to O-O bond cleavage in the peroxo ligand. According to calculations, the reaction proceeds through two intermediate complexes whose structure can be interpreted as that containing coordinated singlet dioxygen (especially in the limiting case) because of noticeably shortened O-O bonds in the ηO2 ligand. The calculated reaction scheme of the conversion of [V(ηO2)3]? into [V(=O)(ηO2)(O3)]? is qualitatively consistent with the previously found kinetics of the formation of ozone and the oxidation of alkanes, olefins, arenes, and singlet dioxygen traps.  相似文献   

9.
The CuII-mediated oxidation of promazine by dioxygen to form promazine 5-oxide was studied in the presence of a large excess of dioxygen, CuII-halides (Cl, Br) and H+ ions using u.v.–vis and ESR spectroscopies. The first step is a fast reaction between promazine and CuII-halides leading to the production of a stable promazine radical with much higher yield in bromide than chloride media. ESR results provide clear evidence for the formation of this radical. In the second step the cation radical is oxidized by dioxygen to a dication hydrolyzing to promazine 5-oxide. The promazine-superoxide complex, concentration of which is determined by steady-state approximation, is postulated as a significant intermediate resulting from the reduction of dioxygen by the cation radical. The final product, promazine 5-oxide, is formed via a spontaneous and a CuII-assisted reaction path way. CuII controls the reaction rate through: (i) oxidation of promazine to the promazine radical, (ii) acting as a scavenger of superoxide, and (iii) slow oxidation of the promazine radical in the parallel reaction. The rate is independent of [H+], linearly dependent on [O2] and only slightly dependent on [CuII] within the excess concentration range of the CuII complexes used. Mechanistic consequences of all these results are discussed.  相似文献   

10.
The product composition and the principles of photochemical transformations of tetrahexylammonium tetrachlorocuprate [(RH)4N+]2[CuIICl4]2− (RH = C6H13) in 2-chlorobutane at 77 K have been found out by ESR spectroscopy. It has been shown that the photolysis of [(RH)4N+]2 [CuIICl4]2− results in the formation of alkyl radicals (R), presumably, anions [CuICl3]2− and organic copper(II) compounds {CuIIR}. A reduction in the quantum yield of primary photolysis products during the reaction, nonequivalence of the quantum yield of the buildup of paramagnetic photolysis products to that of [CuIICl4]2− consumption, and a decrease in the total number of paramagnetic particles in the system during the photolysis have been revealed. A photolysis mechanism involving both photochemical and thermal processes is proposed.  相似文献   

11.
Three new 2D/3D supramolecular architectures derived from Cu‐organic subunits and Keggin anions, [CuII2(biz)8(HPMoVI10MoV2O40)(H2O)2] · 2H2O ( 1 ), [CuI4(biz)8(SiW12O40)] · 2H2O ( 2 ) and [CuI2(dmbiz)4(Hdmbiz)2(SiW12O40)] ( 3 ) (biz = benzimidazole, dmbiz = 5, 6‐dimethyl benzimidazole), were obtained under hydrothermal conditions. Single crystal X‐ray diffraction analysis reveals that compound 1 has two kinds of [CuII(biz)2]2+ cations, which are further extended by Keggin anions into a 2D (4, 8)‐connected supramolecular network by hydrogen bonding interactions. In compound 2 , four types of [CuI(biz)2]+ subunits link the [SiW12O40]4– anions to form a 3D (2, 6)‐connected supramolecular structure. Compound 3 shows a 3D supramolecular network with a NaCl‐type topology constructed by [CuI(dmbiz)2]+ subunits, anions, and discrete [Hdmbiz]+ cations. Moreover, the electrochemical and photocatalytic properties of compounds 1 and 2 were investigated.  相似文献   

12.
The title coordination polymer, poly[(μ4‐2‐oxidoisophthalato‐κ6O1,O2:O2,O3:O3′:O3′)(μ2‐quinoxaline‐κ2N:N′)copper(I)copper(II)], [Cu2(C8H3O5)(C8H6N2)]n, contains two crystallographically distinct Cu ions, one quinoxaline (QA) unit and one 2‐oxidoisophthalate trianion (L) derived from 2‐hydroxyisophthalic acid (H3L). The CuII ion is strongly coordinated by four O atoms in a distorted square geometry, of which two belong to two phenoxide groups and the other two to carboxylate groups of two L ligands. In addition, the CuII cation interacts weakly with a symmetry‐related carboxylate O atom which belongs to the L ligand in an adjacent layer, giving a square‐pyramidal coordination geometry. The CuI ion is trigonally coordinated by two N atoms from two QA molecules and one O atom from an L carboxylate group. The CuI centres are bridged by QA ligands to give a chain along the c axis. Two CuII ions and two L ligands form a [Cu2L2]2− `metallo‐ligand', which coordinates two CuI ions. Thus, the chains of CuI and QA are linked by the [Cu2L2]2− metallo‐ligand to yield a two‐dimensional (6,3) sheet. These sheets are further linked by symmetry‐related carboxylate O atoms of neighbouring layers into a three‐dimensional framework. The in situ reaction from benzene‐1,2,3‐tricarboxylic acid (H3L1) to L in the present system has rarely been observed before, although a few novel in situ reactions, such as ligand oxidative coupling, hydrolysis and substitution, have been observed during the hydrothermal process.  相似文献   

13.
The oxidation of aminoethanethiol (1) was investigated in acid solutions on a glass carbon anode. It was shown that at relatively low anode potentials thiyl radicals RS· are released into the solution, but this does not lead to binding of the oxygen in the solution. Raising the anode potential leads to binding of oxygen, which is probably due to the formation of the intermediate RS+. The oxidation of 1 was studied in Ce(SO4)2+H2SO4 solution. It was shown that under certain conditions the intermediate is RS+, which subsequently converts to a product that could not be identified as any previously described product of the oxidation of thiols. Proposals are made regarding its structure and conversion pathways.B. P. Konstantinov Institute of Nuclear Physics, Russian Academy of Sciences, 188350 Leningrad. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 2, pp. 278–288, February, 1992.  相似文献   

14.
1‐Dimensional halocuprate(I) chains [(Cu2X4)2–]n (= [(CuX2)]n, X = Cl, Br, I) have been synthesized under hydrothermal conditions through in‐situ reduction of CuIIX2 with FeIIX2 or as phase pure materials through comproportionation of CuIIX2 or CuIIO with Cu0 metal in the presence of the respective aqueous hydrogen halide HX and a templating amine. Chains of trans edge‐sharing tetrahedra are obtained with piperazinium or ethylenediammonium dications, while the 4,4′‐bipyridinium dication gave chains of cis edge‐sharing tetrahedra. Two monoprotonated piperazinium groups act as cationic ligands (Hpipz+) towards copper atoms in a molecular [Cu4(μ‐Br6)(Hpipz)2] cluster. Electrical crystal conductivities of the halocuprate [(Cu2X4)2–]n (= [(CuX2)]n) chains (X = Cl, Br, I) are around 10–8 S · cm–1 at room temperature.  相似文献   

15.
A three‐dimensional (3D) 3d‐4f complex, [Cu(en)2][Sm2(C5O5)(C2O4)3(H2O)2] · 8H2O ( 1 ) (en = ethylenediamine, C5O52– = dianion of 4,5‐dihydroxycyclopent‐4‐ene‐1,2,3‐trione), were prepared via the in‐situ ring‐opening oxidation reaction of croconate in the presence of the template‐directed complex, [Cu(en)2]2+ cation. The structural characterization determined by X‐ray diffraction determination reveals that the 3D anionic coordination polymer of [Sm2(C2O4)3(C5O5)(H2O)2]2– in 1 can be describe in terms of in‐plane 2D honeycomb‐like [Sm2(C2O4)3] layered frameworks bridged by oxalate with bis‐chelating mode, being mutually interlinked via the bridge of μ1,2,3,4‐croconate ligands with bis‐chelating coordination mode to complete the 3D open framework, which gives rise to 1D channels with pore size of 14.023 × 11.893 Å (longest atom–atom contact distances) along the b axis. The structure‐directing complex, [Cu(en)2]2+, and solvated water molecules are resided into these honeycomb‐type hexagonal channels. The thermal stability of 1 was further studied by TGA and in‐situ powder X‐ray diffraction measurement.  相似文献   

16.
Redox reactions of quercetin and quercetin-5'-sulfonic acid with Fe3 + and Cu2 + ions and with H2O2 were studied spectrophotometrically. Oxidation of the flavonoids occurs at the 3-OH and 4-OH groups. The redox reactions are largely influenced by pH. With Fe3 + ions, oxidation occurs in strongly acidic (pH 1-2), and with Cu2 + ions, in weakly acidic (pH 4-5) solutions. Oxidation of quercetin and quercetin-5'-sulfonic acid with Fe3 + and Cu2 + ions is accompanied by complexation. Hydrogen peroxide oxidizes the flavonoids at pH 1-3.5, and at pH > 4 oxidation is insignificant.  相似文献   

17.
Effects of Cs+, H+ and Cu2+ counterions in the vanadium containing heteropoly compounds CsxH1-xVO[PMo12O40] and CsyH0.5-yCu0.25VO[PMo12O40] on the catalytic oxidation of isobutane and characterization by TGA, IR and ESR spectroscopies are reported. A high selectivity of 76% for methacrylic acid and methacrolein together has been obtained with Cs0.75H0.25VO[PMo12O40] catalysts at a reactivity of 5.3x10-1 mmol/h cm3.  相似文献   

18.
Although the cyclo‐P6 complex [(Cp*Mo)2(μ,η66‐P6)] ( 1 ) was reported 30 years ago, little is known about its chemistry. Herein, we report a high‐yielding synthesis of 1 , the complex 2 , which contains an unprecedented cyclo‐P10 ligand, and the reactivity of 1 towards the “naked” cations Cu+, Ag+, and Tl+. Besides the formation of the single oxidation products 3 a,b which have a bisallylic distorted cyclo‐P6 middle deck, the [M( 1 )2]+ complexes are described which show distorted square‐planar (M=Cu( 4 a ), Ag( 4 b )) or distorted tetrahedral coordinated (M=Cu( 5 )) M+ cations. The choice of solvent enabled control over the reaction outcome for Cu+, as proved by powder XRD and supported by DFT calculations. The reaction with Tl+ affords a layered two‐dimensional coordination network in the solid state.  相似文献   

19.
《中国化学会会志》2017,64(1):43-54
White microcrystalline diamagnetic oxoperoxotungstate(VI) complexes K[WO(O2)2F]·H2O, K2[WO(O2)2(CO3)]·H2O, [WO(O2)(SO4)(H2O)2] have been synthesized from reaction of Na2WO4·2H2O with aqueous HF, solid KHCO3, aqueous H2SO4 (W:F 1:3; W: CO3 2 1:1; and W: SO4 2 1:3), and an excess of 30% H2O2 at pH 7.5–8. Precipitation was completed by the addition of precooled acetone. The occurrence of terminal WO and triangular bidentate O2 2 (C 2 v ) in the synthesized compounds was ascertained from IR spectra. The IR spectra also suggested that the F and SO4 2 ions in K[WO(O2)2F]·H2O and [WO(O2)(SO4)(H2O)2] were bonded to the WO +4 center in monodentate manner, while CO3 2 ion in K2[WO(O2)2(CO3)]·H2O binds the metal center in bidentate chelating fashion. The complex [WO(O2)(SO4)(H2O)2] is stable upto 110°C. The water molecule in [WO(O2)(SO4)(H2O)2] is coordinated to the WO +4 center, whereas it occurs as water of crystallization in the corresponding peroxo(fluoro) and peroxo(carbonato) compounds. Mass spectra of the compounds are in good agreement with the molecular formulae of the complexes. K2[WO(O2)2(CO3)]·H2O acts as an oxidant for bromide in the aqueous‐phase bromination of organic substrates to the corresponding bromo‐organics, and the complex also oxidizes Hantzsch‐1,4‐dihydropyridine to the corresponding pyridine derivative in excellent yield at room temperature. Density functional theory computation was carried out to compute the frequencies of relevant vibrational modes and electronic properties, and the results are in agreement with the experimentally obtained data.  相似文献   

20.
A Michael addition is usually taken as a base-catalysed reaction. However, our synthesized 2-(quinolin-2-ylmethylene) malonic acid (QMA) as a Michael-type thiol fluorescent probe is acid-active in its sensing reaction. In this work, based on theoretic calculation and experi-mental study on 7-hydroxy-2-(quinolin-2-ylmethylene) malonic acid, we demonstrated that QMA as a Michael acceptor is acid-activatable, i.e., it works only in solutions at pH<7, and the lower the pH of solutions is, the higher reactivity QMA has. In alkaline solution, the malonate QMA[-2H+]2- cannot react with both RS- and RSH. In contrast, 2-(quinolin-2-ylmethylene) malonic ester (QME), the ester of QMA, reveal a contrary pH effect on its sensing reaction, that is, it can sense thiols in alkaline solutions but not in acidic solutions, like a normal base-catalysed Michael addition. The values of activation enthalpies from theoretic calculation support the above sensing behavior of two probes under different pH conditions. In acidic solutions, the protonated QMA is more highly reactive towards elec-trophilic attack over its other ionized states in neutral and alkaline solutions, and so can react with lowly reactive RSH. In contrast, there is a big energy barrier in the interaction of QME with RSH (acidic solutions), and the reaction of QME with the highly reactive nucle-ophile RS- is a low activation energy process (in alkaline solutions). Theoretic calculation reveals that the sensing reaction of QMA undergoes a 1,4-addition process with neutral thiols (RSH), and a 1,2-addition pathway for the sensing reaction of QME with RS-. Therefore, the sensing reaction of QMA is an acid-catalysed Michael addition via a 1,4-addition, and a normal base-catalysed Michael addition via a 1,2-addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号