首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
Separated continuous linear programs (SCLP) are a class of continuous linear programs which, among other things, can serve as a useful model for dynamic network problems where storage is permitted at the nodes. Recent work on SCLP has produced a detailed duality theory, conditions under which an optimal solution exists with a finite number of breakpoints, a purification algorithm, as well as a convergent algorithm for solving SCLP under certain assumptions on the problem data. This paper combines much of this work to develop a possible approach for solving a wider range of SCLP problems, namely those with fairly general costs. The techniques required to implement the algorithm are no more than standard (finite-dimensional) linear programming and line searching, and the resulting algorithm is simplex-like in nature. We conclude the paper with the numerical results obtained by using a simple implementation of the algorithm to solve a small problem. Received: May 1994 / Accepted: March 2002?Published online June 25, 2002  相似文献   

2.
In this paper, we investigate a smoothing-type algorithm for solving the symmetric cone linear program ((SCLP) for short) by making use of an augmented system of its optimality conditions. The algorithm only needs to solve one system of linear equations and to perform one line search at each iteration. It is proved that the algorithm is globally convergent without assuming any prior knowledge of feasibility/infeasibility of the problem. In particular, the algorithm may correctly detect solvability of (SCLP). Furthermore, if (SCLP) has a solution, then the algorithm will generate a solution of (SCLP), and if the problem is strongly infeasible, the algorithm will correctly detect infeasibility of (SCLP).  相似文献   

3.
This paper surveys the recent developments in the theoretical study of separated continuous linear programs (SCLP). This problem serves as a useful model for various dynamic network problems where storage is permitted at the nodes. We demonstrate this by modelling some hypothetical problems of water distribution, transportation and telecommunications. The theoretical developments we present for SCLP fall into two main topics. The first of these is the existence of optimal solutions of various forms. These results culminate in one guaranteeing the existence of a piecewise analytic optimal solution, that is, having a finite number of breakpoints. The second topic we discuss is duality. Under this heading we develop a theory that closely resembles that for finite-dimensional linear programming. For instance, we define complementary slackness and give conditions under which there exist complementary slack primal and dual optimal solutions. Throughout the paper we observe that the main theorems are sufficiently general to include any reasonable practical problems  相似文献   

4.
This paper proposes a smoothing method for symmetric conic linear programming (SCLP). We first characterize the central path conditions for SCLP problems with the help of Chen-Harker-Kanzow-Smale smoothing function. A smoothing-type algorithm is constructed based on this characterization and the global convergence and locally quadratic convergence for the proposed algorithm are demonstrated.  相似文献   

5.
We consider a primal-scaling path-following algorithm for solving a certain class of monotone variational inequality problems. Included in this class are the convex separable programs considered by Monteiro and Adler and the monotone linear complementarity problem. This algorithm can start from any interior solution and attain a global linear rate of convergence with a convergence ratio of 1 ?c/√m, wherem denotes the dimension of the problem andc is a certain constant. One can also introduce a line search strategy to accelerate the convergence of this algorithm.  相似文献   

6.
A gradient projection successive overrelaxation (GP-SOR) algorithm is proposed for the solution of symmetric linear complementary problems and linear programs. A key distinguishing feature of this algorithm is that when appropriately parallelized, the relaxation factor interval (0, 2) isnot reduced. In a previously proposed parallel SOR scheme, the substantially reduced relaxation interval mandated by the coupling terms of the problem often led to slow convergence. The proposed parallel algorithm solves a general linear program by finding its least 2-norm solution. Efficiency of the algorithm is in the 50 to 100 percent range as demonstrated by computational results on the CRYSTAL token-ring multicomputer and the Sequent Balance 21000 multiprocessor.This material is based on research supported by National Science Foundation Grants DCR-8420963 and DCR-8521228 and Air Force Office of Scientific Research Grants AFOSR-86-0172 and AFOSR-86-0255.  相似文献   

7.
In this paper we study the relationship between Constraint Programming (CP) and Shortest Path (SP) problems. In particular, we show that classical, multicriteria, partially ordered, and modality-based SP problems can be naturally modeled and solved within the Soft Constraint Logic Programming (SCLP) framework, where logic programming is coupled with soft constraints. In this way we provide this large class of SP problems with a high-level and declarative linguistic support whose semantics takes care of both finding the cost of the shortest path(s) and also of actually finding the path(s). On the other hand, some efficient algorithms for certain classes of SP problems can be exploited to provide some classes of SCLP programs with an efficient way to compute their semantics.  相似文献   

8.
An interior point algorithm for semi-infinite linear programming   总被引:3,自引:0,他引:3  
We consider the generalization of a variant of Karmarkar's algorithm to semi-infinite programming. The extension of interior point methods to infinite-dimensional linear programming is discussed and an algorithm is derived. An implementation of the algorithm for a class of semi-infinite linear programs is described and the results of a number of test problems are given. We pay particular attention to the problem of Chebyshev approximation. Some further results are given for an implementation of the algorithm applied to a discretization of the semi-infinite linear program, and a convergence proof is given in this case.  相似文献   

9.
A modification of Karmarkar's algorithm for linear programming successively generates column-scaled equivalents of the original linear program, and in the scaled coordinates obtains improvements according to steepest descent directions. As an interior-feasible-preserving algorithm, termination requires a purification algorithm to obtain a dual basic optimal solution. Together the two algorithms comprise a ‘hybrid’ procedure for solving linear programs.In this paper we present some convergence results on the Phase II and Phase I portions of the scaling algorithm. We also present results of numerical experiments on examples of Klee—Minty type which show sensitivity to the starting interior-feasible point and steepest descent step size.  相似文献   

10.
We present an algorithm for solving bilevel linear programs that uses simplex pivots on an expanded tableau. The algorithm uses the relationship between multiple objective linear programs and bilevel linear programs along with results for minimizing a linear objective over the efficient set for a multiple objective problem. Results in multiple objective programming needed are presented. We report computational experience demonstrating that this approach is more effective than a standard branch-and-bound algorithm when the number of leader variables is small.  相似文献   

11.
This paper deals with two-stage and multi-stage stochastic programs in which the right-hand sides of the constraints are Gaussian random variables. Such problems are of interest since the use of Gaussian estimators of random variables is widespread. We introduce algorithms to find upper bounds on the optimal value of two-stage and multi-stage stochastic (minimization) programs with Gaussian right-hand sides. The upper bounds are obtained by solving deterministic mathematical programming problems with dimensions that do not depend on the sample space size. The algorithm for the two-stage problem involves the solution of a deterministic linear program and a simple semidefinite program. The algorithm for the multi-stage problem invovles the solution of a quadratically constrained convex programming problem.  相似文献   

12.
A method of constructing test problems with known global solution for a class of reverse convex programs or linear programs with an additional reverse convex constraint is presented. The initial polyhedron is assumed to be a hypercube. The method then systematically generates cuts that slice the cube in such a way that a prespecified global solution on its edge remains intact. The proposed method does not require the solution of linear programs or systems of linear equations as is often required by existing techniques.The author would like to thank Prof. S. E. Jacobsen for his valuable remarks on initial drafts of this paper and the referees for their constructive suggestions.  相似文献   

13.
A one-phase algorithm for semi-infinite linear programming   总被引:1,自引:0,他引:1  
We present an algorithm for solving a large class of semi-infinite linear programming problems. This algorithm has several advantages: it handles feasibility and optimality together; it has very weak restrictions on the constraints; it allows cuts that are not near the most violated cut; and it solves the primal and the dual problems simultaneously. We prove the convergence of this algorithm in two steps. First, we show that the algorithm can find an-optimal solution after finitely many iterations. Then, we use this result to show that it can find an optimal solution in the limit. We also estimate how good an-optimal solution is compared to an optimal solution and give an upper bound on the total number of iterations needed for finding an-optimal solution under some assumptions. This algorithm is generalized to solve a class of nonlinear semi-infinite programming problems. Applications to convex programming are discussed.  相似文献   

14.
This paper considers a class of quadratic programs where the constraints ae linear and the objective is a product of two linear functions. Assuming the two linear factors to be non-negative, maximization and minimization cases are considered. Each case is analyzed with the help of a bicriteria linear program obtained by replacing the quadratic objective with the two linear functions. Global minimum (maximum) is attained at an efficient extreme point (efficient point) of the feasible set in the solution space and corresponds to an efficient extreme point (efficient point) of the feasible set in the bicriteria space. Utilizing this fact and certain other properties, two finite algorithms, including validations are given for solving the respective problems. Each of these, essentially, consists of solving a sequence of linear programs. Finally, a method is provided for relaxing the non-negativity assumption on the two linear factors of the objective function.  相似文献   

15.
The aim of this paper is to propose a solution algorithm for solving a class of low-rank programs involving linear functions and having a polyhedral feasible region. In particular, the proposed solution method solves in an unifying approach some classes of rank-three multiplicative and fractional programs. The algorithm is based on the so called optimal level solutions method. Some optimality conditions are used to improve the performance of the proposed algorithm. Results of a computational test are provided.  相似文献   

16.
李炜 《数学杂志》2008,28(3):243-248
本文研究了线性规划的求解问题.利用对偶转化的方法,获得了一个计算效率高的新的无人工变量通用算法.该新算法比最近提出的无人工变量算法push-to-pull算法效率更高.  相似文献   

17.
A QMR-based interior-point algorithm for solving linear programs   总被引:5,自引:0,他引:5  
A new approach for the implementation of interior-point methods for solving linear programs is proposed. Its main feature is the iterative solution of the symmetric, but highly indefinite 2×2-block systems of linear equations that arise within the interior-point algorithm. These linear systems are solved by a symmetric variant of the quasi-minimal residual (QMR) algorithm, which is an iterative solver for general linear systems. The symmetric QMR algorithm can be combined with indefinite preconditioners, which is crucial for the efficient solution of highly indefinite linear systems, yet it still fully exploits the symmetry of the linear systems to be solved. To support the use of the symmetric QMR iteration, a novel stable reduction of the original unsymmetric 3×3-block systems to symmetric 2×2-block systems is introduced, and a measure for a low relative accuracy for the solution of these linear systems within the interior-point algorithm is proposed. Some indefinite preconditioners are discussed. Finally, we report results of a few preliminary numerical experiments to illustrate the features of the new approach.  相似文献   

18.
Successive linear programming (SLP) algorithms solve nonlinear optimization problems via a sequence of linear programs. We present an approach for a special class of nonlinear programming problems, which arise in multiperiod coal blending. The class of nonlinear programming problems and the solution approach considered in this paper are quite different from previous work. The algorithm is very simple, easy to apply and can be applied to as large a problem as the linear programming code can handle. The quality of solution, produced by the proposed algorithm, is discussed and the results of some test problems, in the real world environment, are provided.  相似文献   

19.
基于CHKS光滑函数的修改性版本,该文提出了一个带有尺度中心路径的求解对称锥线性规划(SCLP)的非单调光滑牛顿算法.通过应用欧氏若当代数理论,在适当的假设下,证明了该算法是全局收敛和超线性收敛的.数值结果表明了算法的有效性.  相似文献   

20.
《Optimization》2012,61(1-4):149-162
Motivated by the successful application of mathematical programming techniques to difficult machine learning problems, we seek solutions of concave minimization problems over polyhedral sets with minimum number of nonzero components. We that if

such problems have a solution, they have a vertex solution with a minimal number of zeros. This includes linear programs and general linear complementarity problems. A smooth concave exponential approximation to a step function solves the minimumsupport problem exactly for a finite value of the smoothing parameter. A fast finite linear-programming-based iterative method terminates at a stationary point, which for many important real world problems provides very useful answers. Utilizing the

complementarity property of linear programs and linear complementarity problems, an upper bound on the number of nonzeros can be obtained by solving a single convex minimization problem on a polyhedral set  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号