首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel horizontal metal organic vapor phase epitaxy (MOVPE) system, which is capable of handling six 3 inch wafers or eighteen 2 inch wafers mounted on a 10 inch diameter susceptor, has been developed for the growth of III–V compound semiconductors. The characteristic features in this system are “triple flow channel” gas injection and “face-down” wafer setting configuration. The inlet for the source gas flow is divided into three zones (upper, middle and lower flows for hydrides, organometals and hydrogen, respectively) to control the concentration boundary layer and the growth area. The wafers are placed inversely to prevent thermal convection and particles on the growing surface. The independent controlled three-part heating system is also adopted to achieve a uniform temperature distribution over an 8 inch growing surface. The thickness and the doping of GaAs, Al0.3Ga0.7As, In0.48Ga0.52P and In0.2Ga0.8As grown by this system are uniform within ± 2% over all 3 inch wafers.  相似文献   

2.
A growth model for defect-free epitaxial lateral overgrowth by liquid phase epitaxy is presented. Growth in the pure step flow mode and a preferential development of (111) planes in liquid phase epitaxy permit one to quantitatively predict the overgrowth. The shape and size of the Si lamellae which grow over SiO2 depend on the crystallographic orientations of the substrate growth face and of the seeding windows. Overgrowth experiments with Si on oxidized, (111)- and (100)-oriented Si wafers serve to verify the model. Growth experiments from In and Bi solutions in temperature intervals between 950 and 800°C yield overgrowth widths up to 120 μm and aspect ratios of 40:1 on (111) oriented wafers.  相似文献   

3.
《Journal of Crystal Growth》2006,286(2):247-254
The metalorganic vapor-phase epitaxy growth of a highly reflective 24-pair AlGaAsSb/InP-distributed Bragg reflector (DBR) is reported for the first time. The influence of the growth parameters such as the V/III input ratio, the growth temperature and the pressure, the total H2 flow, the gas velocity and the switching sequence of the source gases at the interfaces has been deeply investigated and optimized to achieve stable growth conditions. The DBR achieves a reflectivity as high as 99.5% around 1.55 μm, a uniform stable composition, and an excellent crystal quality over the 2 inch wafer, with a surface free of crosshatch and a defect density below 1/cm2. For the optical characterizations, measurements of linear and nonlinear reflectivity, transmission, pump-probe and photoluminescence were done. The interfaces and bulk layers of InP/AlGaAsSb/InP heterostructures were analyzed by transmission electron microscopy. High resolution X-ray diffraction measurements were used to determine the composition shift in the growth plane of the DBR. The measurements show the high quality of the growth and demonstrate that thick AlGaAsSb/InP heterostructures can be grown by metalorganic vapor-phase epitaxy (MOVPE), and in particular DBRs above 1.31 μm.  相似文献   

4.
Layer structures comprising InP and InGaAsP were compared when grown using nitrogen versus hydrogen as carrier gas. Under nitrogen a remarkable improvement in layer uniformity in terms of thickness and PL wavelength is obtained for InGaAsP layers over the whole compositional range. This improvement duplicates for the PL wavelength of quantum wells. The selective-area growth behaves differently regarding the excess growth at mesa edges and the wavelength variation in the vicinity of masked areas. The basic laser parameters, especially the threshold current density, of 1.55 μm bulk- and MQW-laser structures show at least equivalent, if not superior data when grown under nitrogen.  相似文献   

5.
Highly uniform AlGaAs/GaAs and InGaAs(P)/InP epitaxial layers have been grown in a vertical rotating susceptor MOVPE reactor capable of accommodating three 2′ wafers. The unique water-cooled “showerhead”-type injection distributor which is located 1.5 cm above the substrates ensures a uniform reactant distribution, resulting in uniform growth over a wide range of growth conditions. Periodic multilayer and single layer structures have been used to investigate the thickness and compositional uniformities. The thickness variations over a radial distance of 48 mm for three wafers grown in the same run are within ± 2% for both AlGaAs and InGaAs layers, resulting in a standard deviation of only 0.9%. The gallium concentration of an InGaAs layer varies from 46.88% to 47.01% over the same radial distance with the standard deviation of 0.043%. Measurements of InGaAsP layers grown onto 2′ InP wafers with different alloy compositions show good compositional uniformity yielding standard deviations within 4.4 nm in PL wavelength and 135 ppm in lattice mismatch over a 46 mm radial distance.  相似文献   

6.
Since a few years, a lot of research efforts have been devoted to InN, the least known of the semiconducting group-III nitrides. Most of the samples available today have been grown using the molecular beam epitaxy technique, and fewer using the metal organic vapor phase epitaxy (MOVPE) method. Whatever the method, the growth of InN is extremely challenging, in particular due to the fact that no lattice matched substrate is available.  相似文献   

7.
This review provides an introduction to III-Nitrides MOVPE process modeling and its application to the design and optimization of MOVPE processes. Fundamentals of the MOVPE process with emphasis on transport phenomena are covered. Numerical techniques to obtain solutions for the underlying governing equations are discussed, as well as approaches to describe multi-component diffusion for typical regimes during MOVPE. Properties of common industrial MOVPE reactor types like close spaced showerhead reactors, rotating disk reactors and Planetary Reactors are compared in terms of underlying working principles and generic process parameter dependencies.The main part of the paper is devoted to reviewing gas phase and surface reaction mechanisms during MOVPE. The process design in particular for MOVPE of III-Nitrides is determined by complex gas phase reaction kinetics. Advances in the modeling and predicting of these processes have contributed to understanding and controlling these phenomena in industrial scale MOVPE reactors. Detailed kinetics and simplified surface kinetic approaches describing the incorporation of constituents into multinary solid alloys are compared and a few application cases are presented. Differences in thermodynamic and kinetic properties of multi-layered structures of different compositions such as InGaN, AlGaN can cause enrichment of the adsorbed layer by certain group III atoms (indium in case of InGaN and gallium in case of AlGaN) that translate into specific features of composition profiles along the growth direction.An intrinsic feature of III-nitride materials is epitaxial strain that shows up in different forms during growth and affects both deposition kinetics and material quality. In case of InGaN MOVPE there is a strong interplay between indium content and strain that has direct influence on distribution of material composition in the epitaxial layers and multi-layered structures. Epitaxial strain can relax via different routes such as nucleation and evolution of the extended defects (dislocations), layer cracking and roughening of the surface morphology. Simulation approaches that address coupling of growth kinetics with strain and defect dynamics are discussed and exemplified.  相似文献   

8.
There are three main reasons for the study of antimonides, they are the optical [mainly infrared], electrical [mainly Insb; the Gasb/Inas heterojunction] and structural [mainly ordering and spinodal decomposition] properties. These properties, together with the various techniques used to measure them, are discussed in the context of several difficulties from which the growth of antimonides suffer compared to the growth of nitrides, arsenides or phosphides. These difficulties include the vapour pressure of antimony over the growing surface, the lack of a stable group V hydride, the kinetically controlled nature of the growth and the lack of an insulating antimonide substrate. The effect of these difficulties on the growth of the binary materials, and hence, the various antimonide based devices such as lasers, LEDs, photodetectors, and Hall probes; will be discussed.  相似文献   

9.
Lattice-mismatched heteroepitaxy has attracted considerable attention in recent years. A great interest of these systems is the possibility of integrating devices from different materials on a single substrate. 1.3 and 1.5 μm InGaAs(P)/InP laser diodes are essential for optical communication, whereas InP field effect transistor technology is less developed than that of GaAs MESFET. The performances of laser diodes are much more sensitive to a high density of disclocations, so it would be interesting to grow GaAs MESFET on InP for integration with 1.3 and 1.5 μm lasers. Due to the large difference of the thermal expansion coefficient and lattice parameter between GaAs and InP, it is very difficult to grow GaAs epilayers of high quality on it is very difficult to grow of GaAs epilayer high quality on InP substrates due to the large difference of the thermal expansion coefficient and lattice parameter between GaAs and InP. A new method, metalorganic source modulation epitaxy (MOSME), which improves the crystal quality of GaAs epilayers on InP substrates by MOVPE, has been adopted in our laboratory. The lowest full width at half maximum (FWHM) of the double crystal X-ray (DCX) diffraction spectra reaches as low as 120 arcsec for a 5 μm thick layer. Structural properties (misorientation, lattice parameters and crystal quality) of 1.0–5.0 μm thick GaAs layers grown on InP have been measured by DCX diffraction. On GaAs MESFETs grown on InP, we have measured gm = 100 ms/mm. For these transitions, the current gain cut-off frequency (Ft) is around 12 GHz and the maximum frequency of oscillation (Fmax) is higher than 30 GHz.  相似文献   

10.
Comprehensive model of AlInN Metal-Organic Vapor Phase Epitaxy (MOVPE) accounting for the gas-phase and surface chemistry including parasitic reactions/particle formation is developed. Experimental data and modeling results suggest that as V/III ratio increases from several tens (growth of pure AlN) to several thousands (growth of AlInN), the partial AlN growth rate decreases even in the absence of strong particle formation. This effect is associated with the formation of heavy molecular weight/low diffusivity gas-phase dimer species at high ammonia concentration. At elevated pressures growth rate decreases with pressure at a weakly changing composition, which is related to the gas-phase losses of In- and Al-containing species due to reaction with AlN particles. Model allows the prediction of both the AlInN growth rate and composition versus group-III flow rates, temperature, and pressure.  相似文献   

11.
The development of II–VI MOVPE is reviewed, contrasting the narrow bandgap materials with the wide bandgap. Common issues are the need to grow the layers at lower temperatures than their III–V cousins in order to avoid point defects. This means that II–VI MOVPE occurs in a surface kinetic regime for precursor decomposition and has stimulated a lot of research on alternative precursors. The narrow bandgap II–VI growers have settled on dimethyl cadmium (DMCd) combined with diisopropyl telluride (DIPTe) and a liquid Hg source but wide bandgap growers are split between pyrolytic and photo-assisted growth. Recent progress in p-type doping has enabled the demonstration of some new devices, including two colour infrared detectors and the first MOVPE grown green emitting laser structure. The common theme appears to be hydrogen passivation of the Group V dopant and some novel precursor solutions to this problem are discussed.  相似文献   

12.
GaN single layers and GaInN/GaN heterostructures have been grown by low pressure metalorganic vapor phase epitaxy on sapphire substrates. We found best growth conditions and the highest growth rate for GaN to be at about 1000°C, whereas the growth rate decreased for both, higher and lower temperatures. In contrast, GaInN with a significantly high In content could only be grown at lower temperatures around 700°C. Besides growth temperature and reactor pressure, the composition of the carrier gas was found to play an important role: the In incorporation rate is about doubled when reducing the hydrogen/nitrogen ratio. GaInN/GaN quantum wells show even higher In contents compared to bulk layers.  相似文献   

13.
We report on the MOCVD growth of InN buffer layers on sapphire substrate for InN growth. The approach used assumes that an optimized InN buffer layer has to exhibit at least the same crystalline quality and sapphire surface coverage than the GaN buffer layers allowing to grow high crystalline quality GaN on sapphire. The buffer layers were characterized by AFM and GID measurements. Sapphire nitridation was investigated: it has a strong influence on in-plane crystalline quality. Two kinds of buffer layers were optimized according to the GaN buffer layer specifications: one of them only presented In droplets at its surface. It was shown that the small amount of In droplets increases the adatoms mobility of the main layer overgrown, leading to a 25% decrease of its in-plane mosaicity, compared to InN films directly grown on sapphire. To achieve a same improvement on InN buffer layer free of In droplets, the InN main layer growth temperature had to be increased from 550 °C. to 600 °C.  相似文献   

14.
Epitaxial growth on GaN bulk single crystal substrates sets new standards in GaN material quality. The outstanding properties provide insights into fundamental material parameters (e.g. lattice constants, exciton binding energies, etc.) with a precision not obtainable from heteroepitaxial growth on sapphire or SiC. With metalorganic vapor phase epitaxy (MOVPE) we realized unstrained GaN layers with dislocation densities about six orders of magnitude lower than in heteroepitaxy. By the use of dry etching techniques for surface preparation, an important improvement of crystal quality is achieved. Those layers reveal an exceptional optical quality as determined by a reduction of the low-temperature photoluminescence (PL) linewidth from 5 meV to 0.1 meV and a reduced X-ray diffraction (XRD) rocking curve width from 400 to 20 arcsec. As a consequence of the narrow PL linewidths, new features as, e. g. a fivefold fine structure of the donor-bound exciton line at 3.471 eV was detected. Additionally, all three free excitons as well as their excited states are visible in PL at 2 K.

Dry etching techniques for surface preparation allow morphologies of the layers suitable for device applications. We report on InGaN/GaN multi-quantum-well (MQW)_ structures as well as GaN pn- and InGaN/GaN double heterostructure light emitting diodes (LEDs) on GaN bulk single crystal substrates. Those LEDs are twice as bright as their counterparts grown on sapphire. In addition they reveal an improved high power characteristics, which is attributed to an enhanced crystal quality and an increased p-doping.  相似文献   


15.
The phase diagrams for the MOVPE growth of ZnTe and ZnSeTe have been proposed for the first time, based on the thermodynamic equilibrium established at the solid-vapor interface. The regions for the single condensed phase of ZnTe(s) and of ZnSeTe(s) have been investigated, respectively. Additionally, the growth conditions of appearance for the double condensed phase of ZnTe(s) + Zn(s or ) and ZnTe(s) + Te(s or ) for the ZnTe system, of ZnSeTe(s) + Zn(s or ) and ZnSeTe(s) + Te(s or ) for the ZnSeTe system are discussed.  相似文献   

16.
Gallium arsenide (GaAs) deposition was carried out in a horizontal quartz reactor tube with trimethylgallium (TMGa) and arsine (AsH3) as precursors, using a hydrogen (H2) carrier gas. Temperatures were in the range 400–500 °C, where surface reactions limit deposition rate. Nucleation time and deposition rate were monitored using laser interferometry, optimum reflectance was gained by aligning a quartz wafer to back reflect the incident beam. The 980 nm infrared laser beam was sufficiently long in wavelength to be able to penetrate the wall deposit. Results showing the effect of temperature and V/III ratio on the nucleation time and deposition rate are presented, where with temperature the nucleation delay was observed to reduce and the growth rate to increase. The nucleation delay is consistent with a thermally activated surface nucleation for the parasitic GaAs. A theoretical growth rate model, based on a restricted set of reaction steps was used to compare with the experimental growth rates. Without any free parameters, the growth rates from theoretical calculation and experiment agreed within a factor of two and showed the same trends with V/III ratio and temperature. The non-linearity of the theoretical growth rates on an Arrhenius plot indicates that there is more than one dominant reaction step over the temperature range investigated. The range of experimental activation energies, calculated from Arrhenius plots, was 17.56–23.59 kJ mol−1. A comparison of these activation energies and minimum deposition temperature with the literature indicates that the wall temperature measurement on an Aixtron reactor is over 100 °C higher than previously reported.  相似文献   

17.
The development of the surface structures of carbon-doped epitaxial GaAs layers grown by metalorganic vapor phase epitaxy was investigated by atomic force microscopy (AFM). Carbon-doped GaAs layers were grown using trimethyl gallium and a mixture of AsH3/TMAs. The AFM micrographs were quantitatively analyzed through the determination of the height-height and height-difference correlation functions, which yields both the short and long range surface structures. The incorporation of carbon leads to the progressive roughening of the GaAs surface as well as an increase in surface correlation length. The high concentration of surface-adsorbed methyl radicals are suggested to lead to the diminution of growth rate and change in surface structure.  相似文献   

18.
采用常压金属有机物气相沉积法生长AlAs/GaAs周期性反射膜,并利用双晶X射线衍射、扫描电子显微镜和记录式分光光度计等分析手段,对材料结构及光学性质进行了分析.实验结果表明,在780℃连续生长的薄膜结构和晶体质量都很好,但是反射率低;通过模拟计算,连续生长存在渐变层,而渐变层大大降低了反射率;在同样生长条件下间断生长得到较高反射率的薄膜材料.  相似文献   

19.
We have used atomic force microscopy to investigate the initial stages of the growth of GaAs on ZnSe by metalorganic vapor phase epitaxy. Underlying ZnSe with an atomically flat surface is achieved by growth at 450°C and post-growth annealing at the same temperature. The growth modes of GaAs on the ZnSe surface strongly depend on growth temperatures. The growth carried out at 450°C is 2-dimensional, while that at 550°C is highly 3-dimensional (3D), where the 3D islands are elongated in the [110] direction. The growth behavior, unlike homoepitaxy, is well interpreted in terms of low sticking coefficient and anisotropic lateral growth rate in the heterovalent heteroepitaxy.  相似文献   

20.
利用量子化学计算方法,对MOVPE生长GaN薄膜的表面反应进行研究.特别针对反应前体GaCH3(简称MMG)在理想、H覆盖和NH2覆盖GaN(0001)面的吸附和扩散进行计算分析.通过建立3×3 超晶胞模型,优化计算了MMG在三种不同覆盖表面的稳定吸附位、吸附能和电子布居,搜寻了MMG在稳定吸附位之间的扩散能垒.计算结果表明:对于三种表面,MMG的稳定吸附位均为T4位和H3位,H3位比T4位略微稳定.MMG在NH2覆盖表面吸附能最大,在H覆盖表面吸附能最小,在理想表面吸附能居中.MMG中的Ga与不同的表面原子形成的化学键的键强的大小顺序为:Ga-N>Ga-Ga>Ga-H.相比于理想表面和H覆盖表面,MMG在NH2覆盖表面的扩散能垒最大,因此表面过量的NH2会抑制MMG的扩散.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号