首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The novel bis(cyclohexylaminium) cyclohexylaminebis(orotate–N,O)cuprate(II) dihydrate, (C6H15N)2[Cu(C5H2N2O4)2(C6H14N)] · 2H2O, has been prepared and characterized by elemental analysis, magnetic measurements, FT-IR and UV–Vis spectroscopy, thermal analysis and X-ray diffraction. The Cu(II) complex crystallizes in the monoclinic space group P21/c. The copper atom in the five-coordinated (chaH)2[Cu(HOr–N,O)2(cha)] · 2H2O is chelated by a deprotonated pyrimidine nitrogen atom and carboxylate oxygen atom as a bis(bidentate) ligand and the cyclohexylamine ligand completes the square-pyramidal coordination. The thermal decomposition of the complex has been predicted by the help of thermal analysis (TG, DTG and DTA).  相似文献   

2.
This paper reports the investigation of the thermal stability of a series of new complexes with azo and azomethinic chromophores of the type [Er(HL)2(H2O)2](HO); ((B) H2L: o,o’-dihydroxy-azobenzene (A); (D) H2L: N-(2-hydroxy-1-naphthalidene)aminophenol (C); (F) H2L: N-(2-hydroxy-1-naphthalidene)anthranilic acid (E)). The complexes thermal behaviour steps were investigated and comparatively presented with those of corresponding ligand. The thermal transformations are complex processes according to TG and DTG curves including phenol elimination, oxidative condensation and thermolysis processes. The final product of complexes decomposition is Er2O3.  相似文献   

3.
An asymmetric bidentate Schiff-base ligand (2-hydroxybenzyl-2-furylmethyl)imine (L–OH) was prepared. Three complexes derived from L–OH were synthesized by treating an ethanolic solution of the appropriate ligand with an equimolar amount of metallic salt. Three complexes, Cu2(L–O?)2Cl2 (1), Ni(L–O?)2 (2) and Co(L–O?)3 (3), have been structurally characterized through elemental analysis, IR, UV spectra and thermogravimetric analysis. Single crystal X-ray diffraction shows metal ions and ligands reacted with different proportions 1?:?1, 1?:?2 and 1?:?3, respectively, so copper(II), nickel(II), and cobalt(III) have different geometries.  相似文献   

4.
系列Ln(Ⅲ)配位聚合物(Ln=Eu,Sm,Tb,Pr,Gd)的合成及其荧光分析   总被引:2,自引:1,他引:1  
杨艳红  李野  牛淑云  金晶  迟玉贤 《应用化学》2010,27(9):1055-1060
采用水热法合成了4个具有1D结构的Ln(Ⅲ)配位聚合物,[Eu2(C9H7O2)6(C9H7O2H)(C2H5OH)]n(1)、[Sm(C9H7O2)3]n(2)、[Tb(C9H7O2)3]n(3)和[Gd(C9H7O2)3]n(4)(C9H8O2=肉桂酸)。 通过X射线单晶衍射确定了它们的结构。 这4个Ln(Ⅲ)配合物中,Ln(Ⅲ)的配位数均为9,桥配体均为肉桂酸根,但其配位方式有差异。 对配合物进行了IR、UV-Vis-NIR和荧光光谱等表征。 分析了各配合物的荧光发射,结果表明,在可见区,配合物1发射较明显的红光,配合物2、3发射绿光,配合物4发射蓝光,但很弱。 讨论了具有刚柔相混杂性质的肉桂酸配体对配位聚合物的构筑及稀土离子发光的影响。  相似文献   

5.
Two metal-nitroxide complexes, [Cu(IMPhenCOO)(CH3OH)]2 ·?(NO3)2 (1) and [Co(NIT2Py)(H-2,5-PDA)2] ·?0.5CH3OH ·?2H2O (2) (IMPhenCOOH =?2-carboxyl-9-(4,4,5,5-tetramethylimidazoline-1-oxyl-2-yl)-1,10-phenanthroline, NIT2Py =?2-(2′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and H2-2,5-PDA =?pyridine-2,5-dicarboxylic acid), have been synthesized and structurally characterized by X-ray diffraction. Complex 1 exists as discrete binuclear molecules and each copper(II) is five-coordinate with one tridentate radical ligand (IMPhenCOOH), the other radical ligand through one carboxyl oxygen and one methanol molecule. Complex 1 is the first structurally characterized complex containing the phenanthroline-substituted nitroxide radical. In 2, the Co(II) is six-coordinate with one radical ligand (NIT2Py) and two bidentate pyridine-2,5-dicarboxylate anions.  相似文献   

6.
Summary Prediction of the thermal decomposition pathway of the metal complexes is very important from the theoretical and experimental point of view to determine the properties and structural differences of complexes. In the prediction of the decomposition pathways of complexes, besides the thermal analysis techniques, some ancillary techniques e.g. mass spectroscopy is also used in recent years. In the light of the molecular structures and fragmentation components, it is believed that the thermal decomposition pathway of most molecules is similar to the ionisation mechanism occurring in the mass spectrometer ionisation process. In this study, the thermal decomposition pathway of [Ni(dmen)2(H2O)2](acs)2 complex have been predicted by the help of thermal analysis data (TG, DTG and DTA) and mass spectroscopic fragmentation pattern. The complex was decomposed in four stages: a) dehydration between 84-132°C, b) loss of N,N'-dimethylethylenediamine (dmen) ligand, c) decomposition of remained dmen and acesulfamato (acs) by releasing SO2, d) burning of the organic residue to resulting in NiO. The volatile products observed in the thermal decomposition process were also observed in the mass spectrometer ionisation process except molecular peak and it was concluded that the ionisation and thermal decomposition pathway of the complex resembles each other.  相似文献   

7.
Four mononuclear copper(II) complexes, [Cu(LFQM-115)2] (1), [Cu(LFQM-116)2] (2), [Cu(LFQM-117)2] (3) and [Cu(octyloxy)2] (4) [LFQM-115 = 2-hydroxy-4-O-methylbenzophenone (C14H11O3), LFQM-116 = 2-hydroxy-4-O-butylbenzophenone (C17H18O3), LFQM-117 = 2-hydroxy-4-O-(33-dimethylallyl)benzophenone (C18H18O3) and octyloxy = 2-hydroxy-4-O-octylbenzophenone (C21H25O3)], have been prepared and investigated by infrared spectroscopy, thermal analysis, and powder and single crystal X-ray diffraction. Even though the synthesis and infrared analysis of 1, 2, and 4 have been reported previously, their crystal structures were elucidated for the first time here. In addition, the crystal structures of LFQM-116 and LFQM-117 were also determined by single crystal X-ray diffraction. The pseudo-translational symmetry found in LFQM-116 and the isomorphism between LFQM-115 and LFQM-117 are discussed. The complexes were prepared from a reaction of copper(II) nitrate trihydrate and the respective ligand in a (1:2) molar ratio in methanol (for 1 and 2) or THF (for 3 and 4) with addition of NaOH. Furthermore, crystallographic studies show that each copper(II) exhibits a square planar geometry, coordinated by four oxygens of two ligands. The nature and crystal packing of the intermolecular interactions are discussed. Compounds 2 and 3 are isomorphic crystals and all structures have the same supramolecular synthon.  相似文献   

8.
Abstract

Four new Schiff-base ligands have been prepared from the condensation of 3-formyl-4-hy-droxy-1,8-naphthyridin-2-one with different diamines and a triamine, H2La-H2Ld. Two series of Ni(II) and Cu(II) complexes with the four ligands were also prepared. The ligands and their metal complexes were characterized by chemical analyses, IR, Far-IR, electronic, ESR and mass spectra as well as magnetic measurements and X-ray diffraction patterns.

Different products for Ni(II) and Cu(II) were obtained in similar reactions with the same metal salt, depending on the nature of the ligand. Different geometries were also obtained depending on the counter anion of metal salt. Thus, violet square-planar Cu(II) complexes were obtained with Cu(OAc)2. H2O and green octahedral ones with CuCl2. 2H2O, except the reaction with ligand H2Ld which gave only an octahedral product whether the anion was acetate, chloride or perchlorate. Electronic and ESR spectra were used to differentiate between the two geometries of the Cu(II) complexes. The green octahedral Cu(II) complexes undergo irreversible thermochromism to the violet square-planar complexes except the copper complex of the ligand H2Ld which did not not show any color change and retained its octahedral geometry. Based on the magnetic moments and thermal analyses, only one Ni(II) complex of the Schiffbase ligand H2Lc undergoes reversible thermochromism from green (octahedral) to red (squareplanar). The reverse change of the thermal product (red) to the parent complex (green) proceeded on exposure to atmospheric air for a few minutes. On the other hand, Ni(II) complexes of ligands H2La and H2Lb have stable square-planar geometry and all efforts to add other ligands such as H2O or pyridine to these complexes failed to yield other products. The corresponding Cu(II) complexes were easily transformed to their octahedral geometry by adding H2O or pyridine and heating.  相似文献   

9.
Three new diclofenac‐based copper(II) complexes, namely tetrakis{μ‐2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O:O′}bis(methanol‐κO)copper(II), [Cu2(μ‐dicl)4(CH3OH)2] ( 1 ), bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1‐vinyl‐1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(vim)2] ( 2 ), and bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(im)2] ( 3 ) [dicl is diclofenac (C14H10Cl2NO2), vim is 1‐vinylimidazole (C5H6N2) and im is imidazole (C3H4N2)], have been synthesized and characterized by elemental analysis, FT–IR spectroscopy, thermal analysis and single‐crystal X‐ray diffraction. X‐ray diffraction analysis shows that complex 1 consists of dimeric units in which the dicl ligand exhibits a bidentate syn,syn‐μ2 coordination mode linking two copper(II) centres. Complexes 2 and 3 have mononuclear units with the general formula [Cu(dicl)2L2] (L is vim or im) in which the CuII ions are octahedrally coordinated by two L and two dicl chelating ligands. The L and dicl ligands both occupy the trans positions of the coordination octahedron. The different coordination modes of dicl in the title complexes were revealed by Fourier transform IR (FT–IR) spectroscopy. The spin matching between the copper(II) centres in the dimeric [Cu2(μ‐dicl)4(CH3OH)2] units was also confirmed by magnetic data to be lower than the spin‐only value and electron paramagnetic resonance (EPR) spectra. The thermal properties of the complexes were investigated by thermogravimetric (TG) and differential thermal analysis (DTA) techniques.  相似文献   

10.
Two new mononuclear Ni(II) complexes, [Ni(C10H12O2N2)2(C5H5N)2](NO3)2 (1) and [Ni(C10H12O2N2)2(H2O)2](NO3)2 (2), have been synthesized and characterized by elemental analysis, infrared, UV-Vis spectroscopy, and single-crystal X-ray diffraction. The coordination geometry around each Ni(II) can be described as an octahedron with each Ni(II) coordinated to two imino nitrogens, two carbonyl oxygens, and two solvent molecules (pyridine for 1 and water for 2). In the synthesis, the original ligand changes from o-carboxybenzaldehyde salicyloylhydrazone (C15H12O4N2) into acetone salicyloylhydrazone (C10H12O2N2). The thermal stability of the complexes at three different heating rates (β = 5, 10, and 15°C min?1) show that all the complexes exhibit three thermal decomposition stages and their thermal stability is 1 > 2. Complexes 1 and 2 both display DNA binding ability, ascertained by UV-Vis titration.  相似文献   

11.
The new cyclodiphosph(V)azane derivatives (1,3-dimethyl-2,4-dioxo-2',4'-bis(2,4-bis(dimethylaminopropylimino)cyclodiphosph(V)azane (H2L1) (1,3-dimethyl-2,4-dioxo-2',4'-bis(2,4-bis(dimethylaminoethylimino)cyclodiphosph(V)azane (H2L2) and (1,3-dimethyl-2,4-dioxo-2'-(dimethylaminoethylimino)-4'-(dimethylaminopropyl-imino)cyclodiphosph(V)azane (H2L3) containing four active coordination centers (NNNN) and their Cu(II) complexes have been synthesized and characterized by elemental analyses, spectroscopic methods, molar conductance as well as thermal and magnetic measurements. The UV–Vis and mass spectra of the ligands and their Cu(II) complexes were also recorded. The copper(II) complexes were found to have magnetic moments of 1.58–1.69 B. M. corresponding to one unpaired electron. The possible geometries of the complexes were assigned on the basis of EPR, electronic, and infrared spectral studies. The absence of water molecules in all complexes was supported by thermal studies. All the thermal decomposition processes ended with the formation of CuO. The kinetic and thermodynamic parameters have been calculated. The ligand (H2L3) and its Cu(II) complexes were screened for their anticancer studies against human breast cancer cell lines MCF-7 and minimum inhibitory concentration was calculated. The screening was extended to the antibacterial activity using Kirby–Bauer single disk susceptibility test for all compounds.  相似文献   

12.
Redox active mononuclear and binuclear copper(II) complexes have been prepared and structurally characterized. The complexes have planar N-donor heterocyclic bases like 1,10-phenanthroline (phen), dipyridoquinoxaline (dpq) and dipyridophenazine (dppz) ligands that are suitable for intercalation to B-DNA. Complexes studied for nuclease activity have the formulations [Cu(dpq)2(H2O)] (ClO4)2.H2O (1), [CuL(H2O)2(μ-ox)](ClO4)2 (L = bpy,2; phen,3; dpq,4; and dppz,5) and [Cu(L)(salgly)] (L = bpy,6; phen,7; dpq,8; and dppz,9), where salgly is a tridentate Schiff base obtained from the condensation of glycine and salicylaldehyde. The dpq complexes are efficient DNA binding and cleavage active species. The dppz complexes show good binding ability but poor nuclease activity. The cleavage activity of thebis-dpq complex is significantly higher than thebis-phen complex of copper(II). The nuclease activity is found to be dependent on the intercalating nature of the complex and on the redox potential of the copper(II)/copper(I) couple. The ancillary ligand plays a significant role in binding and cleavage activity.  相似文献   

13.
Triammonium-N-dithiocarboxyiminodiacetate, (NH4)3L, a new dithiocarbamato derivative of iminodiacetate, has been synthesized. The coordination properties of the ligand were tested in reactions with copper(II), nickel(II) and palladium(II) salts in acidic solutions. Complexes with a general formula M(H2L)2 were obtained, with the coordination taking place through the sulfur atoms of the dithiocarbamate moiety. The new compounds were characterized by elemental analysis, UV/VIS and IR spectroscopy, thermal analysis and magnetic measurements. In addition, the ligand was characterized by 1H- and 13C-NMR spectroscopy and molar conductivity measurements. The copper(II) complex is paramagnetic, while the nickel(II) and palladium(II) compounds are diamagnetic. The thermal decomposition of all compounds is continuous and the thermal stability of the complexes is higher than that of the ligand, as expected.  相似文献   

14.
Schiff bases are considered `versatile ligands' in coordination chemistry. The design of polynuclear complexes has become of interest due to their facile preparations and varied synthetic, structural and magnetic properties. The reaction of the `ligand complex' [CuL] {H2L is 2,2′‐[propane‐1,3‐diylbis(nitrilomethanylylidene)]diphenol} with Ni(OAc)2·4H2O (OAc is acetate) in the presence of dicyanamide (dca) leads to the formation of bis(dicyanamido‐1κN1)bis(dimethyl sulfoxide)‐2κO,3κO‐bis{μ‐2,2′‐[propane‐1,3‐diylbis(nitrilomethanylylidene)]diphenolato}‐1:2κ6O,O′:O,N,N′,O′;1:3κ6O,O′:O,N,N′,O′‐dicopper(II)nickel(II), [Cu2Ni(C17H16N2O2)2(C2N3)2(C2H6OS)2]. The complex shows strong absorption bands in the frequency region 2155–2269 cm−1, which clearly proves the presence of terminal bonding dca groups. A single‐crystal X‐ray study revealed that two [CuL] units coordinate to an NiII atom through the phenolate O atoms, with double phenolate bridges between CuII and NiII atoms. Two terminal dca groups complete the distorted octahedral geometry around the central NiII atom. According to differential thermal analysis–thermogravimetric analysis (DTA–TGA), the title complex is stable up to 423 K and thermal decomposition starts with the release of two coordinated dimethyl sulfoxide molecules. Free H2L exhibits photoluminescence properties originating from intraligand (π–π*) transitions and fluorescence quenching is observed on complexation of H2L with CuII.  相似文献   

15.
A dinuclear copper(II) complex with a newly synthesized tridentate Schiff-base ligand 2-[(2-hydroxy-ethylimino)-methyl]-4,6-diiodo-phenol (HL), of formula [Cu2L2Cl2?·?C4H8O] (1), was prepared. Both the ligand and the complex were characterized by X-ray crystallography, confirming that the Schiff base is tridentate and its dinuclear copper(II) complex is five-coordinate from one nitrogen and two oxygens from L and two chlorides. The complex was assayed for antibacterial (Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, and Enterobacter cloacae) activities by the MTT method. Complex 1 exhibited better antimicrobial activity than the ligand.  相似文献   

16.
本文合成了一组新的不对称的双核配合物,[Cu_2(C_2O_4)_2terp]和〔Cu Zn(C_2O_4)_2terp〕(图1),terp表示联三吡啶。配合物〔Cu_2(C_2O_4)2terp〕的变温磁化率已测,其数值已用最小二乘法与Bleaney-Bowers方程拟合,求得交换积分J=-47.20cm~(-1)。文中还用Kahn理论解释了这种较弱的反铁磁自旋交换作用。  相似文献   

17.
The mixed 2,4'-bipyridine-oxalato complexes of the formulae M(2,4'-bipy)2 C2 O4 2H2 O (M (II)=Mn, Co, Ni, Cu; 2,4'-bipyridine=2,4'-bipy or L ; C2 O2– 4 =ox) have been prepared and characterized. IR data show that the 2,4'-bipy coordinated with these metals(II) via the least hindered (4')N atom; that oxalate group acts as bidentate chelating ligand. Room temperature magnetic moments are normal for the orbital singlet states. The thermal decomposition of these complexes was investigated by TG, DTA and DTG in air. The endothermic or exothermic character of the decomposition of ML2 (ox)2H2 O was discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The reactions of copper(II) chloride dihydrate and three bulky Schiff base ligands derived from rimantadine and salicylaldehyde (or methoxy-substituted salicylaldehydes), generated C38H48CuN2O2 (1), C40H52CuN2O4 (2), and C40H52CuN2O4 (3), respectively. These complexes were characterized by infrared spectra, UV–vis, elemental analysis and molar conductance. X-ray single-crystal diffraction analysis reveals that 1 has two different spatial configurations, 1a and 1b. For 1a, each asymmetric unit consists of one mononuclear copper(II) molecule. For 1b, each asymmetric unit consists of two copper(II) mononuclear molecules. All the complexes crystallize in the monoclinic system, P21/c space group for 1a and 2; P21/n space group for 1b; C2/c space group for 3. Each complex for 13 consists of one copper(II) and two corresponding deprotonated ligands. The central copper(II) in all complexes is four-coordinate via two nitrogens and two oxygens from the corresponding Schiff base ligands. The geometry around copper in 1a, 1b, and 2 is distorted square planar, but square planar in 3.  相似文献   

19.
Zinc(II) carboxylates with O‐, S‐ and N‐donor ligands are interesting for their structural features, as well as for their antibacterial and antifungal activities. The one‐dimensional zinc(II) coordination complex catena‐poly[[bis(2,4‐dichlorobenzoato‐κO)zinc(II)]‐μ‐isonicotinamide‐κ2N1:O], [Zn(C7H3Cl2O2)2(C6H6N2O)]n, has been prepared and characterized by IR spectroscopy, single‐crystal X‐ray analysis and thermal analysis. The tetrahedral ZnO3N coordination about the ZnII cation is built up by the N atom of the pyridine ring, an O atom of the carbonyl group of the isonicotinamide ligand and two O atoms of two dichlorobenzoate ligands. Isonicotinamide serves as a bridge between tetrahedra, with a Zn...Zn distance of 8.8161 (7) Å. Additionally, π–π interactions between the planar benzene rings contribute to the stabilization of the extended structure. The structure is also stabilized by intermolecular hydrogen bonds between the amino and carboxylate groups of the ligands, forming a two‐dimensional network. During thermal decomposition of the complex, isonicotinamide, dichlorobenzene and carbon dioxide were evolved. The final solid product of the thermal decomposition heated up to 1173 K was metallic zinc.  相似文献   

20.
Naphthaldimines containing N2O2 donor centers react with platinum(II) and (IV) chlorides to give two types of complexes depending on the valence of the platinum ion. For [Pt(II)], the ligand is neutral, [(H2L1)PtCl2]·3H2O (1) and [(H2L3)2Pt2Cl4]·5H2O (3), or monobasic [(HL2)2Pt2Cl2]·2H2O (2) and [(HL4)2Pt]·2H2O (4). These complexes are all diamagnetic having square-planar geometry. For [Pt(IV)], the ligand is dibasic, [(L1)Pt2Cl4(OH)2]·2H2O (5), [(L2)Pt3Cl10]·3H2O (6), [(L3)Pt2Cl4(OH)2]·C2H5OH (7) and [(L4)Pt2Cl6]·H2O (8). The Pt(IV) complexes are diamagnetic and exhibit octahedral configuration around the platinum ion. The complexes were characterized by elemental analysis, UV-Vis and IR spectra, electrical conductivity and thermal analyses (DTA and TGA). The molar conductances in DMF solutions indicate that the complexes are non-ionic. The complexes were tested for their catalytic activities towards cathodic reduction of oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号