首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 14 毫秒
1.
The influence of a prepulse on soft X-ray emission in the range of 50–200 from an aluminium plasma produced by 130 fs Ti: Sapphire laser pulses with an intensity of 1014 W/cm2 at normal incidence is studied. An ultrashort prepulse with an intensity of 1013 W/cm2 significantly enhances soft X-ray emission when there is a long time separation ( > 100 ps) between the prepulse and an intense main pulse. It is also observed for the first time that a prepulse with a short pulse time separation can slightly reduce soft X-ray emission, contrary to the previous work done using 248 nm laser pulses. This can be explained qualitatively in terms of the dependence of absorption on the length scale.  相似文献   

2.
Hydrogen-like and helium-like X-ray spectra (between 7.1 and 8.2 , i.e., 1500 to 17.50 eV, respectively) from solid aluminium targets irradiated with high intensity (up to 1017 W/cm2) subpicosecond (0.7 ps) laser pulses have been measured. The spectra show that the resonance lines are very broad and very asymmetric. Evidence for a Doppler-shifted reabsorption of the resonance line emission has been found. The spectra have been simulated by a computer code for the calculation of spectral-line intensities and linewidths. Electron densities exceeding the critical density have been estimated for different laser intensities by comparing the observed and simulated intensity ratio of different dielectronic satellite lines. From the X-ray spectra generated byp- ands-polarized radiation fat different laser intensities, the thresholds for the formation of hydrogen-like and helium-like ions have been determined.  相似文献   

3.
It is well established that, at sub-relativistic intensities, the absorption of laser light by underdense plasmas decreases with increasing pulse intensity as interaction enters a non-linear regime. On the other hand, as the relativistic interaction regime is reached, further absorption mechanisms can be activated which can account for a substantial energy transfer. Using the particle code WAKE, we performed numerical simulations of the relativistic interaction of intense laser pulses with underdense plasmas in conditions that can be experimentally tested. Our simulations show that, while the relativistic laser intensity generates a population of fast electrons, a considerable fraction of the pulse energy goes into a population of thermal electrons. These findings open new possibilities for a direct observation of relativistic interaction processes using high resolution soft X-ray techniques.  相似文献   

4.
The limits put by optical guiding, and channel guiding mechanisms on the Laser Wakefield Acceleration (LWFA) technique are imposed on the Resonant Laser Wakefield Acceleration (RLWFA) scheme. Energy gained by the electrons in both schemes are calculated and compared. It has presented that in the RLWFA case, the electrons gain more and more energy after each traversal of the laser pulse and the electrons in a plasma gain about 3 GeV after 10 passages of the laser pulse. They gain 13 GeV when the laser light makes 50 passages and 26 GeV after the laser beam traverses the plasma 100 times. Moreover, the channel guiding mechanism is integrated to the RLWFA scheme and together with diffraction guiding a model for electron acceleration is proposed. Received 13 September 2000 and Received in final form 27 October 2000  相似文献   

5.
We studied the emission properties of carbon fiber cathodes. These cathodes were made either of a single carbon fiber or of carbon fabric, or of an array of carbon fiber bundles. It was found that an intense emission of electrons occurs from a plasma which is formed on the carbon fiber surface as a result of a flashover process. In addition, the time delay in the appearance of the electron emission with respect to the start of the accelerating voltage pulse was found to depend strongly on the voltage growth rate. A simple model of the plasma formation is suggested. Received 12 March 2001  相似文献   

6.
Summary In this paper the relativistic second-harmonic generation of a high-power laser radiation in a laser-produced plasma has been studied theoretically in the presence of a self-generated magnetic field. The relativistic Vlasov equation has been employed for the nonlinear response of the electrons in the hot magnetized plasma. It is observed that the power conversion efficiency of the generated second harmonic wave is much higher for relativistic calculations than that for nonrelativistic calculations. To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.  相似文献   

7.
The dynamics of clusters irradiated by a high-intensity ultrashort pulse laser has been studied using a fully relativistic three-dimensional Molecular Dynamics Model. A fast three-dimensional tree algorithm for computing the electrostatic force has been developed and compared with the conventional particle-particle method. The particle-particle method requires computation time, which scales as O(Np 2), and it is faster for small number of particles Np <103. In the opposite case of relatively large ensemble of particles Np >103, the preferred method is the tree algorithm whose computation time scales as O(Np log Np). The tree algorithm has been benchmarked against the particle-particle method for clusters composed of xenon and deuterium atoms and its accuracy and computation time have been analyzed. The optimum free parameter of the tree method has been determined to be θ≈0.5. We addressed the effects of boundary conditions by studying the contribution of adjacent clusters to the total electromagnetic force exerted on individual particles. We found that the adjacent clusters play a minor role in the overall cluster dynamics.  相似文献   

8.
We exposed small size-controlled lead clusters with a few hundreds of atoms to laser pulses with peak intensities up to 1015 W cm-2 and durations between 60 fs to 2.5 ps. We measured kinetic energies and ionic charge of fragments as a function of the laser intensity and pulse duration. Highly charged Pbn+ ions up to n = 26 have been detected presenting kinetic energies up to 15 keV. For comparison with our experimental results, we have performed simulations of the laser coupling with a cluster-sized lead nanoplasma using a qualitative model that was initially proposed by Ditmire and co-workers at LLNL for the case of rare gas clusters. From these simulations we conclude that two mechanisms are responsible for the explosion dynamics of small lead clusters. As already observed for large rare gas clusters (n = 106), fragments with charge states below +10 are driven by Coulomb forces, whereas the higher charged fragments are accelerated by hydrodynamic forces. The latter mechanism is a direct consequence of the strong laser heating of the electron cloud in the nanoplasma arising from a plasmon-like resonance occurring at n e = 3n c. In order to obtain an optimized laser-nanoplasma coupling, our results suggest that the plasma resonance should occur at the peak intensity of the laser pulse. Due to inertial effects, even for such small-sized clusters, the observed optimum pulse duration is in the order of 1 ps which is in good agreement with our theoretical results. Received 18 March 2002 Published online 19 July 2002  相似文献   

9.
Collisionless absorption of linearly polarized electromagnetic wave in a plasma with anisotropic bi-Maxwellian electron velocity distribution is investigated. Due to the wave magnetic field influence on the electron kinetics in the skin layer, the wave absorption is found to significantly depend on the degree of the electron temperature anisotropy. Depending on the value of the skin layer anomaly parameter, and on the electron temperature anisotropy degree, the conditions are found when a significant decrease or increase of the collisionless absorption is expected. Received 25 January 2002  相似文献   

10.
A soft X-ray laser-plasma source, used in radiobiology experiments with yeast cells, was characterised with flat crystal spectrometers and P-I-N diodes, obtaining an absolute measurement of the emission spectrum. A comparison with the results of simulations performed with the code RATION allowed the characterisation of the emitting plasma. A model for the energy deposition in yeast cells was developed to take into account the different cell structures (wall-membrane complex, cytoplasm and nucleus). Dose calculations performed considering the source emission spectrum were compared with direct measurements of transmission through plastic foils and allowed to verify the hypothesis of preferential dose deposition in the outer cellular regions. Received 16 September 1999 and Received in final form 1st February 2000  相似文献   

11.
In this paper we analyze the use of phase plates to obtain homogeneous laser intensity profiles. We studied the dependence of intensity distribution on phase plates characteristics, we obtained analytical solution for the intensity profile in the focal plane for plane waves and developed a numerical simulator to calculate the intensity distribution with a generic initial beam and at any propagation plane. We defined criteria to evaluate the quality of profiles produced by different phase plates. Finally we compared experimental results obtained at the Max-Planck Institut für Quantenoptik of Garching with our numerical simulations. Received 23 July 2001 and Received in final form 8 January 2002  相似文献   

12.
The USA Inertial Confinement Fusion (ICF) Program evolved from the Nuclear Test Program which had restricted shot opportunities for experimentalists to develop sophisticated experimental techniques. In contrast the ICF program in the US was able to increase the shot availability on its large facilities, and develop sophisticated targets and diagnostics to measure and understand the properties of the high energy density plasmas (HEDP) formed. Illustrative aspects of this evolution at Lawrence Livermore National Laboratory (LLNL), with examples of the development of diagnostics and target fabrication are described.  相似文献   

13.
In this paper the results of an experiment on soft X-ray contact microscopy using a laser-plasma source are presented. A resolution of 50 nm has been achieved imaging pig sperm cells, while other specimens, such as algae and yeast cells, showed internal details, proving the technique to be a powerful tool for biological investigations. Original biological information has been obtained and the conditions for optimal image formation have been studied. Received 5 June 2002 Published online 24 September 2002 RID="a" ID="a"e-mail: batani@mib.infn.it  相似文献   

14.
The reflection of a test electromagnetic wave normally impinging on a plasma surface is investigated within the formalism of the surface impedance. The plasma is assumed to possess an anisotropic two-temperature bi-Maxwellian electron velocity distribution function. The linearly polarized impinging wave during reflection transforms into an elliptically polarized one, the degree of ellipticity depending on the electron temperature anisotropy. Polarization modifications of the reflected wave are particularly important in the conditions of the anomalous skin-effect, when the influence of the wave magnetic field on the electron kinetics in the skin layer is strong. Relations are reported connecting the reflected wave basic parameters to those of the reflecting plasma surface, making possible, through the experimental determination of the reflected wave characteristics, to find the plasma electron concentration and the two effective temperatures. Received 21 May 2002 / Received in final form 21 August 2002 Published online 6 November 2002 RID="a" ID="a"e-mail: zarcone@unipa.it  相似文献   

15.
Using 50 fs ( ∼ 2×1018 W/cm2) and 2 ps ( ∼ 5×1016 W/cm2) pulses from a Ti:Sa multi-TW laser at 800 nm wavelength large Xe-clusters ( 105...106 atoms per cluster) have been excited. Absolute yield measurements of EUV-emission in a wavelength range between 10 nm and 15 nm in combination with cluster target variation were carried out. The ps-laser pulse has resulted in about 30% enhanced and spatially more uniform EUV-emission compared to fs-laser excitation. Circularly polarized laser light instead of linear polarization results in enhanced emission which is probably caused by electrons gaining higher energies by the polarization dependent optical field ionization process. An absolute emission efficiency at 13.4 nm of up to 0.8% in 2π sr and 2.2% bandwidth has been obtained. Received 11 January 2001 and Received in final form 27 March 2001  相似文献   

16.
Stable auto-solitary solutions were found on the basis of three-dimensional numerical simulations within the simplest model under global constraint. The model involves a diffusion equation with a nonlinear source term containing both local and non-local nonlinearity. The source term was chosen so as to describe qualitatively the most fundamental peculiarities of discharge physics, namely local nonlinear increase in heating and ionization rate and non-local attenuation of electric field strength with plasma density growth. The properties of the autosolitons created by the model have been investigated employing the different parameters as control parameter. Therefore the results of calculations can be used to construct a process of plasma contraction in gas discharge. Received 26 July 1999 and Received in final form 5 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号