首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of diffractive X‐ray optical elements is reported, which have been used as beam‐shaping condenser lenses in full‐field transmission X‐ray microscopes. These devices produce a square‐shaped flat‐top illumination on the sample matched to the field of view. The size of the illumination can easily be designed depending on the geometry and requirements of the specific experimental station. Gold and silicon beam‐shapers have been fabricated and tested in full‐field microscopes in the hard and soft X‐ray regimes, respectively.  相似文献   

2.
The MISTRAL beamline is one of the seven phase‐I beamlines at the ALBA synchrotron light source (Barcelona, Spain) that will be opened to users at the end of 2010. MISTRAL will be devoted to cryotomography in the water window and multi‐keV spectral regions for biological applications. The optics design consists of a plane‐grating monochromator that has been implemented using variable‐line‐spacing gratings to fulfil the requirements of X‐ray microscopy using a reflective condenser. For instance, a fixed‐focus condition independent of the included angle, constant magnification as well as coma and spherical aberration corrections are achieved with this system. The reported design is of wider use.  相似文献   

3.
A new monochromator scheme is presented in which an extra‐focus constant‐included‐angle varied‐line‐spacing cylindrical‐grating monochromator (extra‐focus CIA‐VCGM) is conveniently combined with a variable‐included‐angle varied‐line‐spacing plane‐grating monochromator (VIA‐VPGM). This dual‐mode solution delivers high performance in the energy range from vacuum ultraviolet (VUV) to soft X‐ray. The resolving power and the efficiency of this dual‐mode grating monochromator are analyzed in detail based on realistic parameters. Comparisons with the commonly used variable‐included‐angle plane‐grating monochromator and normal‐incidence monochromator (VIA‐PGM/NIM) hybrid monochromator are made.  相似文献   

4.
The efficiency of soft X‐ray diffraction gratings is studied using measurements and calculations based on the differential method with the S‐matrix propagation algorithm. New open‐source software is introduced for efficiency modelling that accounts for arbitrary groove profiles, such as those based on atomic force microscopy (AFM) measurements; the software also exploits multi‐core processors and high‐performance computing resources for faster calculations. Insights from these calculations, including a new principle of optimal incidence angle, are used to design a soft X‐ray emission spectrometer with high efficiency and high resolution for the REIXS beamline at the Canadian Light Source: a theoretical grating efficiency above 10% and resolving power EE > 2500 over the energy range from 100 eV to 1000 eV are achieved. The design also exploits an efficiency peak in the third diffraction order to provide a high‐resolution mode offering EE > 14000 at 280 eV, and EE > 10000 at 710 eV, with theoretical grating efficiencies from 2% to 5%. The manufactured gratings are characterized using AFM measurements of the grooves and diffractometer measurements of the efficiency as a function of wavelength. The measured and theoretical efficiency spectra are compared, and the discrepancies are explained by accounting for real‐world effects: groove geometry errors, oxidation and surface roughness. A curve‐fitting process is used to invert the calculations to predict grating parameters that match the calculated and measured efficiency spectra; the predicted blaze angles are found to agree closely with the AFM estimates, and a method of characterizing grating parameters that are difficult or impossible to measure directly is suggested.  相似文献   

5.
Phase‐sensitive X‐ray imaging methods can provide substantially increased contrast over conventional absorption‐based imaging, and therefore new and otherwise inaccessible information. Differential phase‐contrast (DPC) imaging, which uses a grating interferometer and a phase‐stepping technique, has been integrated into TOMCAT, a beamline dedicated to tomographic microscopy and coherent radiology experiments at the Swiss Light Source. Developments have been made focusing on the fast acquisition and post‐processing of data to enable a high‐throughput of samples, with obvious advantages, also through increasing the efficiency of the detecting system, of helping to reduce radiation dose imparted to the sample. A novel aquarium design allows a vertical rotation axis below the sample with measurements performed in aqueous environment. Optimization of the data acquisition procedure enables a full phase volume (1024 × 1024 pixels × 1000 projections × 9 phase steps, i.e. 9000 projections in total) to be acquired in 20 min (with a pixel size of 7.4 µm), and the subsequent post‐processing has been integrated into the beamline pipeline for sinogram generation. Local DPC tomography allows one to focus with higher magnification on a particular region of interest of a sample without the presence of local tomography reconstruction artifacts. Furthermore, `widefield' imaging is shown for DPC scans for the first time, enabling the field of view of the imaging system to be doubled for samples that are larger than the magnification allows. A case study is illustrated focusing on the visualization of soft tissue features, and particularly the substantia nigra of a rat brain. Darkfield images, based on local X‐ray scattering, can also be extracted from a grating‐based DPC scan: an example of the advantages of darkfield contrast is shown and the potential of darkfield X‐ray tomography is discussed.  相似文献   

6.
X‐ray phase‐contrast imaging is an effective approach to drastically increase the contrast and sensitivity of microtomographic techniques. Numerous approaches to depict the real part of the complex‐valued refractive index of a specimen are nowadays available. A comparative study using experimental data from grating‐based interferometry and propagation‐based phase contrast combined with single‐distance phase retrieval applied to a non‐homogeneous sample is presented (acquired at beamline ID19‐ESRF). It is shown that grating‐based interferometry can handle density gradients in a superior manner. The study underlines the complementarity of the two techniques for practical applications.  相似文献   

7.
The optical design of a two‐dimensional imaging soft X‐ray spectrometer is described. A monochromator will produce a dispersed spectrum in a narrow vertical illuminated stripe (~2 µm wide by ~2 mm tall) on a sample. The spectrometer will use inelastically scattered X‐rays to image the extended field on the sample in the incident photon energy direction (vertical), resolving the incident photon energy. At the same time it will image and disperse the scattered photons in the orthogonal (horizontal) direction, resolving the scattered photon energy. The principal challenge is to design a system that images from the flat‐field illumination of the sample to the flat field of the detector and to achieve sufficiently high spectral resolution. This spectrometer provides a completely parallel resonant inelastic X‐ray scattering measurement at high spectral resolution (~30000) over the energy bandwidth (~5 eV) of a soft X‐ray absorption resonance.  相似文献   

8.
A new method of harmonics rejection based on X‐ray refractive optics has been proposed. Taking into account the fact that the focal distance of the refractive lens is energy‐dependent, the use of an off‐axis illumination of the lens immediately leads to spatial separation of the energy spectrum by focusing the fundamental harmonic at the focal point and suppressing the unfocused high‐energy radiation with a screen absorber or slit. The experiment was performed at the ESRF ID06 beamline in the in‐line geometry using an X‐ray transfocator with compound refractive lenses. Using this technique the presence of the third harmonic has been reduced to 10?3. In total, our method enabled suppression of all higher‐order harmonics to five orders of magnitude using monochromator detuning. The method is well suited to third‐generation synchrotron radiation sources and is very promising for the future ultimate storage rings.  相似文献   

9.
The Pixium 4700 detector represents a significant step forward in detector technology for high‐energy X‐ray diffraction. The detector design is based on digital flat‐panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 × 2480 pixels with a pixel size of 154 µm × 154 µm, and thus it covers an effective area of 294 mm × 379 mm. Designed for medical imaging, the detector has good efficiency at high X‐ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high‐energy X‐ray diffraction are presented. Quantitative comparisons with a widespread high‐energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point‐spread function and distortion‐free image, allows for the acquisition of high‐quality diffraction data at high X‐ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.  相似文献   

10.
Full‐field X‐ray absorption spectroscopy experiments allow the acquisition of millions of spectra within minutes. However, the construction of the hyperspectral image requires an image alignment procedure with sub‐pixel precision. While the image correlation algorithm has originally been used for image re‐alignment using translations, the Scale Invariant Feature Transform (SIFT) algorithm (which is by design robust versus rotation, illumination change, translation and scaling) presents an additional advantage: the alignment can be limited to a region of interest of any arbitrary shape. In this context, a Python module, named SIFT_PyOCL, has been developed. It implements a parallel version of the SIFT algorithm in OpenCL, providing high‐speed image registration and alignment both on processors and graphics cards. The performance of the algorithm allows online processing of large datasets.  相似文献   

11.
During the last 20 years, beamline BL08B has been upgraded step by step from a photon beam‐position monitor (BPM) to a testing beamline and a single‐grating beamline that enables experiments to record X‐ray photo‐emission spectra (XPS) and X‐ray absorption spectra (XAS) for research in solar physics, organic semiconductor materials and spinel oxides, with soft X‐ray photon energies in the range 300–1000 eV. Demands for photon energy to extend to the extreme ultraviolet region for applications in nano‐fabrication and topological thin films are increasing. The basic spherical‐grating monochromator beamline was again upgraded by adding a second grating that delivers photons of energy from 80 to 420 eV. Four end‐stations were designed for experiments with XPS, XAS, interstellar photoprocess systems (IPS) and extreme‐ultraviolet lithography (EUVL) in the scheduled beam time. The data from these experiments show a large count rate in core levels probed and excellent statistics on background normalization in the L‐edge adsorption spectrum.  相似文献   

12.
A new ultrahigh‐energy‐resolution and wide‐energy‐range soft X‐ray beamline has been designed and is under construction at the Shanghai Synchrotron Radiation Facility. The beamline has two branches: one dedicated to angle‐resolved photoemission spectroscopy (ARPES) and the other to photoelectron emission microscopy (PEEM). The two branches share the same plane‐grating monochromator, which is equipped with four variable‐line‐spacing gratings and covers the 20–2000 eV energy range. Two elliptically polarized undulators are employed to provide photons with variable polarization, linear in every inclination and circular. The expected energy resolution is approximately 10 meV at 1000 eV with a flux of more than 3 × 1010 photons s?1 at the ARPES sample positions. The refocusing of both branches is based on Kirkpatrick–Baez pairs. The expected spot sizes when using a 10 µm exit slit are 15 µm × 5 µm (horizontal × vertical FWHM) at the ARPES station and 10 µm × 5 µm (horizontal × vertical FWHM) at the PEEM station. The use of plane optical elements upstream of the exit slit, a variable‐line‐spacing grating and a pre‐mirror in the monochromator that allows the influence of the thermal deformation to be eliminated are essential for achieving the ultrahigh‐energy resolution.  相似文献   

13.
针对现有的LED照明系统体积大、结构复杂、工作距离短的缺点,提出一种轻量化、均匀性好、能够实现远距离照明的单颗LED投影系统的设计方法。从照明设计理论出发,结合非成像设计和成像设计方法,设计了由单颗大功率LED、聚光镜、孔径光阑和投影物镜组成的投影照明系统。聚光镜对LED出射的光线进行匀化并会聚于照明面位置,投影物镜将照明面处的光斑投影到指定距离的接收面上。系统采用全透射式结构,便于加工和装调;单颗大功率LED作为光源能够有效减小系统体积和质量。实验结果表明:系统能在3 m~3 km范围内形成均匀度大于90%的照明,成像质量良好,投影面畸变小于5%,能满足远距离均匀照明投影的要求。  相似文献   

14.
The developed curved image plate (CIP) is a one‐dimensional detector which simultaneously records high‐resolution X‐ray diffraction (XRD) patterns over a 38.7° 2θ range. In addition, an on‐site reader enables rapid extraction, transfer and storage of X‐ray intensity information in ≤30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X‐ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X‐ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high‐temperature XRD.  相似文献   

15.
The design and performance of a novel ultra‐high‐vacuum‐compatible artificial channel‐cut monochromator that has been commissioned at undulator beamline 8‐ID‐I at the Advanced Photon Source are presented. Details of the mechanical and optical design, control system implementation and performance of the new device are given. The monochromator was designed to meet the challenging stability and optical requirements of the X‐ray photon correlation spectroscopy program hosted at this beamline. In particular, the device incorporates a novel in‐vacuum sine‐bar drive mechanism for the combined pitch motion of the two crystals and a flexure‐based high‐stiffness weak‐link mechanism for fine‐tuning the pitch and roll of the second crystal relative to the first crystal. The monochromator delivers an exceptionally uniform and stable beam and thereby improved brilliance preservation.  相似文献   

16.
The electrode of Li‐ion batteries is required to be chemically and mechanically stable in the electrolyte environment for in situ monitoring by transmission X‐ray microscopy (TXM). Evidence has shown that continuous irradiation has an impact on the microstructure and the electrochemical performance of the electrode. To identify the root cause of the radiation damage, a wire‐shaped electrode is soaked in an electrolyte in a quartz capillary and monitored using TXM under hard X‐ray illumination. The results show that expansion of the carbon–binder matrix by the accumulated X‐ray dose is the key factor of radiation damage. For in situ TXM tomography, intermittent X‐ray exposure during image capturing can be used to avoid the morphology change caused by radiation damage on the carbon–binder matrix.  相似文献   

17.
The Compact Light Source is a miniature synchrotron producing X‐rays at the interaction point of a counter‐propagating laser pulse and electron bunch through the process of inverse Compton scattering. The small transverse size of the luminous region yields a highly coherent beam with an angular divergence of a few milliradians. The intrinsic monochromaticity and coherence of the produced X‐rays can be exploited in high‐sensitivity differential phase‐contrast imaging with a grating‐based interferometer. Here, the first multimodal X‐ray imaging experiments at the Compact Light Source at a clinically compatible X‐ray energy of 21 keV are reported. Dose‐compatible measurements of a mammography phantom clearly demonstrate an increase in contrast attainable through differential phase and dark‐field imaging over conventional attenuation‐based projections.  相似文献   

18.
The first imaging results obtained from a small‐size synchrotron are reported. The newly developed Compact Light Source produces inverse Compton X‐rays at the intersection point of the counter propagating laser and electron beam. The small size of the intersection point gives a highly coherent cone beam with a few milliradian angular divergence and a few percent energy spread. These specifications make the Compact Light Source ideal for a recently developed grating‐based differential phase‐contrast imaging method.  相似文献   

19.
Microbeam radiation therapy (MRT) is a novel irradiation technique for brain tumours treatment currently under development at the European Synchrotron Radiation Facility in Grenoble, France. The technique is based on the spatial fractionation of a highly brilliant synchrotron X‐ray beam into an array of microbeams using a multi‐slit collimator (MSC). After promising pre‐clinical results, veterinary trials have recently commenced requiring the need for dedicated quality assurance (QA) procedures. The quality of MRT treatment demands reproducible and precise spatial fractionation of the incoming synchrotron beam. The intensity profile of the microbeams must also be quickly and quantitatively characterized prior to each treatment for comparison with that used for input to the dose‐planning calculations. The Centre for Medical Radiation Physics (University of Wollongong, Australia) has developed an X‐ray treatment monitoring system (X‐Tream) which incorporates a high‐spatial‐resolution silicon strip detector (SSD) specifically designed for MRT. In‐air measurements of the horizontal profile of the intrinsic microbeam X‐ray field in order to determine the relative intensity of each microbeam are presented, and the alignment of the MSC is also assessed. The results show that the SSD is able to resolve individual microbeams which therefore provides invaluable QA of the horizontal field size and microbeam number and shape. They also demonstrate that the SSD used in the X‐Tream system is very sensitive to any small misalignment of the MSC. In order to allow as rapid QA as possible, a fast alignment procedure of the SSD based on X‐ray imaging with a low‐intensity low‐energy beam has been developed and is presented in this publication.  相似文献   

20.
It is shown theoretically that the asymmetric or inclined double‐crystal X‐ray monochromator may be used for X‐ray pulse compression if the pulse is properly chirped. By adjusting the mutual distance of the two asymmetric or inclined crystals it should be possible to achieve even a sub‐femtosecond compression of a chirped free‐electron laser pulse. The small d‐spacing of the crystal enables a more compact scheme compared with the currently used grating compression scheme. The asymmetric cut of the crystal enables the acceptance of a larger bandwidth. The inclined cut has larger tunability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号