首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
An automatic sample changer chamber for total reflection X‐ray fluorescence (TXRF) and X‐ray absorption near‐edge structure (XANES) analysis in TXRF geometry was successfully set up at the BAMline at BESSY II. TXRF and TXRF‐XANES are valuable tools for elemental determination and speciation, especially where sample amounts are limited (<1 mg) and concentrations are low (ng ml?1 to µg ml?1). TXRF requires a well defined geometry regarding the reflecting surface of a sample carrier and the synchrotron beam. The newly installed chamber allows for reliable sample positioning, remote sample changing and evacuation of the fluorescence beam path. The chamber was successfully used showing accurate determination of elemental amounts in the certified reference material NIST water 1640. Low limits of detection of less than 100 fg absolute (10 pg ml?1) for Ni were found. TXRF‐XANES on different Re species was applied. An unknown species of Re was found to be Re in the +7 oxidation state.  相似文献   

2.
Substructure and phase composition of silicon suboxide films containing silicon nanocrystals and implanted with carbon have been investigated by means of the X‐ray absorption near‐edge structure technique with the use of synchrotron radiation. It is shown that formation of silicon nanocrystals in the films' depth (more than 60 nm) and their following transformation into silicon carbide nanocrystals leads to abnormal behaviour of the X‐ray absorption spectra in the elementary silicon absorption‐edge energy region (100–104 eV) or in the silicon oxide absorption‐edge energy region (104–110 eV). This abnormal behaviour is connected to X‐ray elastic backscattering on silicon or silicon carbide nanocrystals located in the silicon oxide films depth.  相似文献   

3.
The local structures of pure NiAl and Ti‐, Co‐doped NiAl compounds have been obtained utilizing extended X‐ray absorption fine‐structure (EXAFS) spectroscopy. The results provide experimental evidence that Ni antisite defects exist in the Ni‐rich NiAl compounds. The site preference of Ti and Co has been confirmed. Ti occupies the Al sublattice, while Co occupies the Ni sublattice. The structure parameters obtained by EXAFS were consistent with the X‐ray diffraction results. Owing to the precipitation of α‐Cr, the local structure of NiAl‐Cr has not been obtained, making the site preference of Cr unclear.  相似文献   

4.
To obtain reliable in situ information on the distribution and speciation of Pb in plants with low Pb content, special attention needs to be paid to the synchrotron radiation based micro‐X‐ray fluorescence and micro‐X‐ray absorption near edge structure (μ‐XANES) spectrometry to avoid specious results in the chosen XRF region of interest and speciation linear combination fitting. First, an Arabidopsis thaliana shoot cultured in a Pb solution is analyzed to obtain two‐dimensional Pb distribution graphs, where an overlap of Pb, As, Se, and Br lines in synchrotron radiation based micro‐X‐ray fluorescence spectra is found. To avoid this overlap, (1)As K‐L3 and Pb L3‐M5, (2)As K‐M3, (3)Pb L2‐M4, (4)Se K‐L3, and (5)Br K‐M3 lines should be chosen in the region of interest. The Pb content in the seed coat, root, and stem are 48.2, 17.3, and 5.8 times higher, respectively, than in the leaf, while the Pb content in the seed coat, root, stem, and leaf increased 3458, 1241, 420, and 72 times, respectively, compared with the A. thaliana sample without a Pb solution soak. Second, Pb speciation of the same shoot is analyzed using μ‐XANES. It is important to define a combination fitting range because different possible Pb combinations can emerge using different ranges. Different speciations were found in the root[Pb(Ac)2 and PbSO4], stem[Pb(Ac)2 and Pb3(PO4)2], leaf[Pb(OH)2 and Pb5Cl(PO4)3], and seed coat[Pb3(PO4)2, Pb(OH)2, and PbCO3] between the fitting range of E0 ? 20eV and E0 + 70eV. A more complete Pb XANES database with more references, especially organic Pb compounds, is needed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High‐resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)‐ and (100)‐oriented planes which stabilizes against further oxidation of the particles. X‐ray absorption spectroscopy (XANES) and X‐ray photoelectron spectroscopy (XPS) measurements at the O 1s‐edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milled for different times. XANES results reveal the presence of the +4 (SiO2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2p XPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub‐oxide, +1 (Si2O), +2 (SiO) and +3 (Si2O3), states are present. The analysis of the change in the sub‐oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.  相似文献   

6.
Elemental distribution images acquired by imaging X‐ray fluorescence analysis can contain high degrees of redundancy and weakly discernible correlations. In this article near real‐time non‐negative matrix factorization (NMF) is described for the analysis of a number of data sets acquired from samples of a bi‐modal α+β Ti‐6Al‐6V‐2Sn alloy. NMF was used for the first time to reveal absorption artefacts in the elemental distribution images of the samples, where two phases of the alloy, namely α and β, were in superposition. The findings and interpretation of the NMF results were confirmed by Monte Carlo simulation of the layered alloy system. Furthermore, it is shown how the simultaneous factorization of several stacks of elemental distribution images provides uniform basis vectors and consequently simplifies the interpretation of the representation.  相似文献   

7.
Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K‐edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free‐ and cation‐bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K‐edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al‐saturated montmorillonite and Al‐saturated soil organic matter (SOM), but far less efficiently by hematite, Ca‐saturated montmorillonite and Ca‐saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K‐edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al‐saturated montmorillonite and Al‐saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P‐retaining soil minerals in addition to spectra of free or cation‐bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K‐edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented.  相似文献   

8.
The present study sheds some light on the long‐standing debate concerning the coordination properties between uranyl ions and the amidoxime ligand, which is a key ingredient for achieving efficient extraction of uranium. Using X‐ray absorption fine structure combined with theoretical simulation methods, the binding mode and bonding nature of a uranyl–amidoxime complex in aqueous solution were determined for the first time. The results show that in a highly concentrated amidoxime solution the preferred binding mode between UO22+ and the amidoxime ligand is η2 coordination with tris‐amidoximate species. In such a uranyl–amidoximate complex with η2 binding motif, strong covalent interaction and orbital hybridization between U 5f/6d and (N, O) 2p should be responsible for the excellent binding ability of the amidoximate ligand to uranyl. The study was performed directly in aqueous solution to avoid the possible binding mode differences caused by crystallization of a single‐crystal sample. This work also is an example of the simultaneous study of local structure and electronic structure in solution systems using combined diagnostic tools.  相似文献   

9.
This very first report of an X‐ray absorption spectroscopy experiment at Synchrotron SOLEIL is part of a long‐term study dedicated to pathological calcifications. Such biological entities composed of various inorganic and/or organic compounds also contain trace elements. In the case of urinary calculi, different papers already published have pointed out that these oligo‐elements may promote or inhibit crystal nucleation as well as growth of mineral. Use of this analytical tool specific to synchrotron radiation, allowing the determination of the local environment of oligo‐elements and thus their occupation site, contributes to the understanding of the role of trace elements in pathological calcifications.  相似文献   

10.
This study assesses whether the concentrations of biologically important elements in bones are altered by long‐term consumption of cadmium (Cd)‐contaminated water. Heavy metal poisoning has significant impact on humans, and pollutants such as Cd are often found at high concentrations in waterways. Twelve Sprague Dawley rats consumed water with 50 p.p.m. Cd (Cd group), and another 12 consumed normal water (control group). Six subjects from each group were sacrificed after 2 weeks and the others after 4 weeks. Spectra were acquired from the femur by using the EDAX Eagle III micro‐XRF setup, and quantitative calculations were performed by using the fundamental parameter method to determine the concentrations of elements. A bone calcium/phosphorus concentration ratio (Ca/P) of 2.07 ± 0.001 is observed in the spectra from control subjects after 2 weeks and 2.07 ± 0.001 after 4 weeks. In Cd subjects, Ca/P after 2 weeks is 2.04 ± 0.001 and after 4 weeks is 1.97 ± 0.003. Statistically significant differences are obtained when comparing controls with Cd subjects at both time points and when comparing Cd subjects at both time points. Cadmium poisoning significantly affects bone Ca and P concentrations, increasing the likelihood of osteoporosis and other bone diseases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A preparation method of arsenic‐containing white rice grains as calibration standards was developed for the X‐ray fluorescence (XRF) analysis of arsenic in rice grains. Calibration standards were prepared by adding 10 g of white rice grains (from Japan) to 100 ml methanol‐containing dimethylarsinic acid corresponding to 2–100 µg arsenic. The mixture was heated, dried at 150 °C, cooled to room temperature, and then stored in a silica gel desiccator. A total of 5.0 g of each calibration standard was packed into a polyethylene cup (32 mm internal diameter and 23 mm height) covered with a 6‐µm‐thick polypropylene film and then analyzed by wavelength‐dispersive XRF spectrometry. The calibration curve for arsenic obtained from the white rice grains containing arsenic showed good linearity over a concentration range of 0.21–5.00 mg kg?1 arsenic. The limit of detection of arsenic was 0.080 mg kg?1. To check the reliability of the XRF method, the concentrations of arsenic in six samples of grain cereals and two samples of flour were compared with those obtained by atomic absorption spectrometry after acid decomposition. The values obtained by both analytical methods showed good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A particle‐induced X‐ray emission (PIXE) technique has been used in the determination of the principal components Pb, Zr and Ti and the substituting elements Sr, Cr, Nb and La in lead zirconate titanate ceramics. In general, precision of analysis was concentration dependent from each element under study. For Pb, precision varied between 0.13% and 0.16%, at higher concentration of 59.32–64.5%. It was around 6–9% for Sr, Cr and Nb at concentrations of 1% or lower. Particular attention was devoted to the estimation of the analysis trueness. With this purpose, three methods were applied: (1) comparison of PIXE and inductively coupled plasma optical emission spectrometry concentrations, (2) recovery study and (3) comparison with a laboratory standard. Trueness of analysis was around 100 ± 10% for the evaluated elements Pb, Zr, Ti, Sr and Cr. The expected stoichiometry and elemental composition homogeneity of a wide group of produced ceramics were confirmed by the PIXE technique. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The performance of a four‐element Si drift detector for energy‐dispersive fluorescence‐yield X‐ray absorption fine‐structure measurements is reported, operating at the National Institute of Standards and Technology beamline X23A2 at the National Synchrotron Light Source. The detector can acquire X‐ray absorption fine‐structure spectra with a throughput exceeding 4 × 105 counts per second per detector element (>1.6 × 106 total counts per second summed over all four channels). At this count rate the resolution at 6 keV is approximately 220 eV, which adequately resolves the Mn Kα and Kβ fluorescence lines. Accurate dead‐time correction is demonstrated, and it has been incorporated into the ATHENA data analysis program. To maintain counting efficiency and high signal to background, it is suggested that the incoming count rate should not exceed ~70% of the maximum throughput.  相似文献   

14.
Polarization energy dispersive X‐ray fluorescence spectrometry was used in the determination of Pb, As and Cd, as well as Cr, Cu, Zn, Ni and other minor and trace elements in the soil samples taken from a polluted area by lead mine exploitation. Two difficulties have to be overcome. One is strong overlap of Pb Lα over As Kα and another is lack of suitable certified reference materials. The different excitation conditions and analytical lines were tried to reduce the impact of overlap of Pb Lα over As Kα. When KBr was used as the second target, compared with Zr, the proportion from Pb Lα was reduced about six times. Even so, however, the overlap was not reduced enough to be ignored. The inductively coupled plasma atomic emission spectrometry and mass spectrometry methods were used to analyze parts of soil samples and provide data for compensating lack of reference materials. By this method, the analytical concentration range of Pb, As and Cd were significantly extended. The analytical range of Pb, As and Cd were 1.4 µg/g~4.2%, 0.6 µg/g~9.3% and 0.5 µg/g~1500 µg/g, respectively. The high concentrations of Pb, As and Cd were found in the samples in the vicinity of the Pb‐Zn mine. The concentrations of Pb, As, Cd, Zn and Cu were higher than the Class III in the Chinese environmental quality standard for soils. The highest concentrations of Pb, As, Cd and Zn in the soil samples were 14 960, 2726, 65 and 9439 µg/g, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Confocal Raman microspectroscopy and portable X‐ray fluorescence spectroscopy were used nondestructively to characterise 18 intact jade artifacts from the Cemetery of the Ying State in Pingdingshan, Henan Province, China. These jade artifacts date from the early to the middle of the Western Zhou Period (the mid‐11th to the mid‐9th century BC). Thirteen jade artifacts made of tremolite and two jade artifacts made of actinolite were discriminated from each other by their hydroxyl stretching modes, and a malachite pendant, a muscovite dagger‐axe, and a crystal pendant were also identified. Black graphite was analysed in three jade artifacts composed of tremolite, and the mineralization temperatures were estimated and compared. A red powder was found on the surface of all of the jade artifacts, and this was found to be cinnabar (HgS), which is thought to have been added to the tomb environments during burial ceremonies. The chemical compositions and the possible provenances of the jade artifacts are briefly discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A series of Ni dithiolene complexes Ni[S2C2(CF3)]2n (n = ?2, ?1, 0) ( 1 , 2 , 3 ) and a 1‐hexene adduct Ni[S2C2(CF3)2]2(C6H12) ( 4 ) have been examined by Ni K‐edge X‐ray absorption near‐edge structure (XANES) and extended X‐ray absorption fine‐structure (EXAFS) spectroscopies. Ni XANES for 1 – 3 reveals clear pre‐edge features and approximately +0.7 eV shift in the Ni K‐edge position for `one‐electron' oxidation. EXAFS simulation shows that the Ni—S bond distances for 1 , 2 and 3 (2.11–2.16 Å) are within the typical values for square planar complexes and decrease by ~0.022 Å for each `one‐electron' oxidation. The changes in Ni K‐edge energy positions and Ni—S distances are consistent with the `non‐innocent' character of the dithiolene ligand. The Ni—C interactions at ~3.0 Å are analyzed and the multiple‐scattering parameters are also determined, leading to a better simulation for the overall EXAFS spectra. The 1‐hexene adduct 4 presents no pre‐edge feature, and its Ni K‐edge position shifts by ?0.8 eV in comparison with its starting dithiolene complex 3 . Consistently, EXAFS also showed that the Ni—S distances in 4 elongate by ~0.046 Å in comparison with 3 . The evidence confirms that the neutral complex is `reduced' upon addition of olefin, presumably by olefin donating the π‐electron density to the LUMO of 3 as suggested by UV/visible spectroscopy in the literature.  相似文献   

17.
Formation of γH2AX foci (a marker of DNA double‐strand breaks), rates of foci clearance and apoptosis were investigated in cultured normal human fibroblasts and p53 wild‐type malignant glioma cells after exposure to high‐dose synchrotron‐generated microbeams. Doses up to 283 Gy were delivered using beam geometries that included a microbeam array (50 µm wide, 400 µm spacing), single microbeams (60–570 µm wide) and a broad beam (32 mm wide). The two cell types exhibited similar trends with respect to the initial formation and time‐dependent clearance of γH2AX foci after irradiation. High levels of γH2AX foci persisted as late as 72 h post‐irradiation in the majority of cells within cultures of both cell types. Levels of persistent foci after irradiation via the 570 µm microbeam or broad beam were higher when compared with those observed after exposure to the 60 µm microbeam or microbeam array. Despite persistence of γH2AX foci, these irradiation conditions triggered apoptosis in only a small proportion (<5%) of cells within cultures of both cell types. These results contribute to the understanding of the fundamental biological consequences of high‐dose microbeam irradiations, and implicate the importance of non‐apoptotic responses such as p53‐mediated growth arrest (premature senescence).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号