首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The interior structure, morphology and ligand surrounding of a sputtering‐deposited chromium monolayer and Cr/C and Cr/Sc multilayers are determined by various hard X‐ray techniques in order to reveal the growth characteristics of Cr‐based thin films. A Cr monolayer presents a three‐stage growth mode with sudden changes occurring at a layer thickness of ~2 nm and beyond 6 nm. Cr‐based multilayers are proven to have denser structures due to interfacial diffusion and layer growth mode. Cr/C and Cr/Sc multilayers have different interfacial widths resulting from asymmetry, degree of crystallinity and thermal stability. Cr/Sc multilayers present similar ligand surroundings to Cr foil, whereas Cr/C multilayers are similar to Cr monolayers. The aim of this study is to help understand the structural evolution regulation versus layer thickness and to improve the deposition technology of Cr‐based thin films, in particular for obtaining stable Cr‐based multilayers with ultra‐short periods.  相似文献   

2.
Amorphous CoMoN/CN compound soft-X-ray multilayers were fabricated by dual-facing-target sputtering. Their structural thermal stability has been investigated by monitoring the structural evolutions of CN and CoMoN sublayers at annealing temperatures up to 800 °C using complementary measurement techniques, and measuring the coefficient of interfacial diffusion at annealing temperatures below 300 °C. The period expansion at annealing temperatures below 600 °C, which is usually observed in annealed metal/carbon soft-X-ray multilayers, is only 5%. The enhanced sp2 to sp3 bond ratio caused by the incorporation annealing effect of nitrogen [1] is thought to be responsible for the improved thermal stability of CN sublayers. Mo addition greatly suppresses the structural thermal evolution of CoMoN sublayers. XPS and TEM analyses indicate that the strong chemical bonding between N and Co atoms and Mo nitride aggregation in the grain boundary of cobalt are the main mechanisms for the high thermal stability of CoMoN sublayers. The layered structure of the CoMoN/CN multilayers still exists at the annealing temperature of 800 °C, while Co/C and CoN/CN multilayers have already been destroyed at this temperature. Compared with Co/C and CoN/CN multilayers, the smaller negative interdiffusivity measured by X-ray diffraction reveals the stable interfaces of CoMoN/CN multilayers. These results illustrate that refractory metal incorporation and strong chemical bond establishment are quite effective in obtaining thermally highly stable compound soft-X-ray optical multilayers . PACS 68.65+g; 68.55.Ln; 68.35.Fx; 68.60.Dv  相似文献   

3.
286 , 176 (1996)]. (1) The interdiffusion critical wavelengths were calculated as 2.00–2.04 nm at temperatures ranging from 473 to 523 K, which is equal to those of Co/C multilayers within the experimental error, indicating that the interdiffusion behaviours in the CoN/CN multilayers are still decided by the thermodynamic properties of the Co-C system. (2) The effective interdiffusivities and macroscopic diffusion coefficients are smaller. (3) The activation energy for diffusion is larger. The features imply that it is possible to improve the thermal stability of Co/C multilayers by doping with N atoms. The high-temperature annealing results imply that the destructive threshold of the CoN/CN multilayers is 100–200 °C higher than that of Co/C multilayers. The small-angle X-ray diffraction of CoN/CN soft X-ray multilayers indicates that the period expansion of the multilayers is only 4% at 400 °C, and the interface pattern still exists even if they were annealed at 700 °C. The large-angle X-ray diffraction and transmission electron microscopy analysis reveal that the crystalline process is significantly retarded if doped with N atoms, leading to a smaller grain size at higher annealing temperatures. The significant improvement of the thermal stability can be interpreted with Raman spectroscopy and X-ray photoelectron spectroscopy analysis. The Raman spectra give the evidence that the formation of the sp3 bonding in the CN sublayers can be suppressed effectively by doping with N atoms, and thus the period expansion resulting from the changes in the density of CN layers can be decreased considerably. The X-ray photoelectron spectra give information about existence of the strong covalent bonding between N atoms and the ionic bonding between Co and N atoms, which can slow down the tendency of the structural relaxation. The interstitial N atoms decrease the mobility of Co atoms, and thus the fcc Co and hcp Co coexist even though the annealing temperature is much higher than the phase transformation temperature of 420 °C, leading to the suppression of the grain growth. Received: 29 May 1997/Accepted: 8 September 1997  相似文献   

4.
B4C‐based multilayers have important applications for soft to hard X‐rays. In this paper, X‐ray grazing‐incidence reflectivity and diffuse scattering, combining various analysis methods, were used to characterize the structure of B4C‐based multilayers including layer thickness, density, interfacial roughness, interdiffusion, correlation length, etc. Quantitative results for W/B4C, Mo/B4C and La/B4C multilayers were compared. W/B4C multilayers show the sharpest interfaces and most stable structures. The roughness replications of La/B4C and Mo/B4C multilayers are not strong, and oxidations and structure expansions are found in the aging process. This work provides guidance for future fabrication and characterization of B4C‐based multilayers.  相似文献   

5.
Mo/Si multilayers are fabricated by electron-beam evaporation in UHV at different temperatures (30° C, 150° C, 200° C) during deposition. After completion their thermal stability is tested by baking them at temperatures (T bak) between 200° C and 800° C in steps of 50° C or 100° C. After each baking step the multilayers are characterized by small angle CuK-X-ray diffraction. Additionally, the normal incidence soft-X-ray reflectivity for wavelengths between 11 nm and 19 nm is determined after baking at 500° C. Furthermore, the layer structure of the multilayers is investigated by means of Rutherford Backscattering Spectroscopy (RBS) and sputter/Auger Electron Spectroscopy (AES) technique. While the reflectivity turns out to be highest for a deposition temperature of 150° C, the thermal stability of the multilayer increases with deposition temperature. The multilayer deposited at 200° C stands even a 20 min 500° C baking without considerable changes in the reflectivity behaviour.  相似文献   

6.
Ca?RuO? undergoes a metal-insulator transition at T(MI)=357 K, followed by a well-separated transition to antiferromagnetic order at T(N)=110 K. Dilute Cr doping for Ru reduces the temperature of the orthorhombic distortion at T(MI) and induces ferromagnetic behavior at T(C). The lattice volume V of Ca?Ru?-(x)Cr(x)O? (0 < x < 0.13) abruptly expands with cooling at both T(MI) and T(C), giving rise to a total volume expansion ΔV/V ≈ 1%, which sharply contrasts the smooth temperature dependence of the few known examples of negative volume thermal expansion driven by anharmonic phonon modes. In addition, the near absence of volume thermal expansion between T(C) and T(MI) represents an Invar effect. The two phase transitions, which surprisingly mimic the classic freezing transition of water, suggest an exotic ground state driven by an extraordinary coupling between spin, orbit, and lattice degrees of freedom.  相似文献   

7.
Ru/C multilayer monochromators with different periodic thicknesses were investigated using X‐ray grazing‐incidence reflectivity, diffuse scattering, Bragg imaging, morphology testing, etc. before and after cryogenic cooling. Quantitative analyses enabled the determination of the key multilayer structural parameters for samples with different periodic thicknesses, especially the influence from the ruthenium crystallization. The results also reveal that the basic structures and reflection performance keep stable after cryogenic cooling. The low‐temperature treatment smoothed the surfaces and interfaces and changed the growth characteristic to a low‐frequency surface figure. This study helps with the understanding of the structure evolution of multilayer monochromators during cryogenic cooling and presents sufficient experimental proof for using cryogenically cooled multilayer monochromators in a high‐thermal‐load undulator beamline.  相似文献   

8.
Sputter-deposited Al/CuO multilayers capable of highly energetic reactions have been the subject of intense studies for tunable initiation and actuation. Designing high performance Al/CuO-based initiator devices definitively requires reliable prediction of their ignition and reaction kinetics including self-heating or ageing as a function of heating rate and environmental conditions. The paper proposes a heterogeneous reaction model integrating an ensemble of basic mechanisms (oxygen diffusion, structural transformations, polymorphic phase changes) that have been collected from recent experimental investigations. The reaction model assumes that the rate of reaction is limited by the transport of oxygen across the growing layer of Al2O3 separating Al and CuO. Importantly, we show that the model predicts reasonably all exotherms through a wide range of temperature (ambient – 1000°C), all resulting from a pure diffusion process as experimentally observed for such Al/CuO multilayers. The model shows how the temperature ramp affects the structure of the multilayer and especially the growth of alumina-based interfacial regions. It highlights the importance of the interfacial chemistry evolution such as the native mixture of AlxCuyOz transformation into a thin amorphous alumina, and the polymorphic phase transformation of this latter. The first one occurring at ~350°C results in a loss of continuity of the interface leading to the accelerated redox reaction whereas the second one occurring between 500 and 600°C produces a denser barrier to oxygen diffusion leading to the stop of redox reaction. We finally use the model to simulate thermal annealing as usually performed in accelerated ageing experiments. We theoretically observe and experimentally validate that a two weeks exposure of the multilayers at 200°C starts degrading the multilayers thermal properties whereas when the temperature remains below 200°C, the material keeps its entire integrity.  相似文献   

9.
为了实现7nm波段Mo/B4C多层膜反射镜元件的制备,研究了不同退火方式对Mo/B4C多层膜应力和热稳定性的影响。首先,采用直流磁控溅射方法分别基于石英和硅基板制作Mo/B4C多层膜样品,设计周期为3.58nm、周期数为60,Mo膜层厚度与周期的比值为0.4。其次,采用不同的退火方式对所制作的样品进行退火实验,最高退火温度500℃。最后,分别采用X射线掠入射反射、X射线散射和光学干涉仪的方法对退火前后的Mo/B4C多层膜的周期、界面粗糙度和应力进行测试。测试结果表明采用真空退火方式能够有效降低Mo/B4C多层膜的应力,且退火前后Mo/B4C多层膜的周期和界面粗糙度无明显变化,证明Mo/B4C多层膜在500℃以内具有很好的热稳定性。  相似文献   

10.
We study magnetization reversal in the interlayer coupled [Pt/Co]5/Ru/[Co/Pt]5 multilayers (MLs) by means of the measurement of extraordinary Hall effect (EHE). Fitting experimental data to a simple model, we determine the interlayer coupling strength for various thicknesses of the ferromagnetic layers at a fixed Ru spacer thickness. It is found that the dependence of interlayer coupling strength on the Pt layer thickness is much stronger than the previous report in the ferromagnetic/nonmagnetic/ferromagnetic multilayers.  相似文献   

11.
To study the fate of a molecular di‐μ‐oxo‐bridged trinuclear ruthenium complex, [(NH3)5Ru–O–Ru(NH3)4–O–Ru(NH3)5]6+, also known as Ru‐red, during the electro‐driven water oxidation reaction, electrochemical in situ surface enhanced Raman spectroscopy (SERS) investigations have been conducted on an electrochemically roughened gold surface in acidic condition. It was previously described that on a basal plane pyrolitic graphite electrode in 0.1 M H2SO4 aqueous solution, Ru‐red undergoes one electron oxidative conversion into a stable higher oxidation state ruthenium complex, Ru‐brown, at <1.0 V (vs normal hydrogen electrode (NHE)), and this leads to water oxidation and dioxygen release, but the fate of Ru‐red during electrochemistry was not studied in much detail. In this investigation, Ru‐red dispersed in acid electrolyte and immobilized on a roughened gold electrode without Ru‐red in solution has been subjected to anodic controlled potential experiments, and in situ SERS was carried out at various potentials in succession. The electrochemical SERS data obtained for Ru‐red are also compared with in situ SERS results of an electrodeposited ruthenium oxide thin film on the Au disk. Our study suggests that on a gold electrode in sulfuric acid solution containing Ru‐red, one electron oxidative conversion of Ru‐red to a higher oxidation state ruthenium compound, Ru‐brown, occurs at ca. 0.74 V (vs NHE), as supported by the electrochemical in situ SERS experiments. Moreover, at higher potentials and on Au disk, the Ru‐red / Ru‐brown are not stable and slowly decompose or electro‐oxidize leading to deactivation of the tri‐ruthenium catalytic system in acidic medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The structural characterization of heat-treated CN films fabricated by dual-facing-target sputtering for soft X-ray multilayer mirrors was performed by means of X-ray diffraction (XRD), Raman spectroscopy (RS) and X-ray photoelectron spectroscopy (XPS). The XRD analyses indicate a graphization process in the CN films during thermal annealing. The Raman analyses imply that the primary bonding in the CN films is sp2. In other words, the formation of the sp3 bonding in the CN films can be suppressed effectively by doping with N atoms, and thus the thickness expansion resulting from the changes in the density of CN films during annealing can be decreased considerably. This result is also clarified by the increased conductivity measured. The XPS results give the information of the existence of the strong covalent bonding between N and C atoms, which can slow down the tendency of the structural relaxation during annealing. These results suggest that CN films suitable for soft X-ray multilayers used at high-temperature environments can be obtained by reactive dual-facing-target sputtering. With the low-angle X-ray diffraction measurements, we do observe the enhanced thermal stability of CoN/CN multilayers. Received: 2 October 1998 / Accepted: 21 April 1999 / Published online: 23 September 1999  相似文献   

13.
Silver nanoparticles were synthesized with a chemical reduction method in the presence of polyvinylpyrrolidone as stabilizing agent. The thermal stability behavior of the silver nanoparticles was studied in the temperature range from 25 to 700°C. Thermal gravimetric analysis was used to measure the weight loss of the silver nanoparticles. Scanning electron microscopy and high‐resolution transmission electron microscopy were used to observe the morphology and the change in shape of the silver nanoparticles. In situ temperature‐dependent small‐angle X‐ray scattering was used to detect the increase in particle size with temperature. In situ temperature‐dependent X‐ray diffraction was used to characterize the increase in nanocrystal size and the thermal expansion coefficient. The results demonstrate that sequential slow and fast Ostward ripening are the main methods of nanoparticle growth at lower temperatures (<500°C), whereas successive random and directional coalescences are the main methods of nanoparticle growth at higher temperatures (>500°C). A four‐stage model can be used to describe the whole sintering process. The thermal expansion coefficient (2.8 × 10?5 K?1) of silver nanoparticles is about 30% larger than that of bulk silver. To our knowledge, the temperature‐driven directional coalescence of silver nanocrystals is reported for the first time. Two possible mechanisms of directional coalescence have been proposed. This study is of importance not only in terms of its fundamental academic interest but also in terms of the thermal stability of silver nanoparticles.  相似文献   

14.
In antiferromagnetically coupled multilayers with perpendicular anisotropy unusual multidomain textures can be stabilized due to a close competition between long-range demagnetization fields and short-range interlayer exchange coupling. In particular, the formation and evolution of specific topologically stable planar defects within the antiferromagnetic ground state, i.e. wall-like structures with a ferromagnetic configuration extended over a finite width, explain configurational hysteresis phenomena recently observed in [Co/Pt(Pd)]/Ru and [Co/Pt]/NiO multilayers. Within a phenomenological theory, we have analytically derived the equilibrium sizes of these “ferroband” defects as functions of the antiferromagnetic exchange, a bias magnetic field, and geometrical parameters of the multilayers. In the magnetic phase diagram, the existence region of the ferrobands mediates between the regions of patterns with sharp antiferromagnetic domain walls and regular arrays of ferromagnetic stripes. The theoretical results are supported by magnetic force microscopy images of the remanent states observed in [Co/Pt]/Ru.  相似文献   

15.
Pd/Y multilayers are high‐reflectance mirrors designed to work in the 7.5–11 nm wavelength range. Samples, prepared by magnetron sputtering, are deposited with or without B4C barrier layers located at the interfaces of the Pd and Y layers to reduce interdiffusion, which is expected from calculating the mixing enthalpy of Pd and Y. Grazing‐incident X‐ray reflectometry is used to characterize these multilayers. B4C barrier layers are found to be effective in reducing Pd–Y interdiffusion. Details of the composition of the multilayers are revealed by hard X‐ray photoemission spectroscopy with X‐ray standing wave effects. This consists of measuring the photoemission intensity from the samples by performing an angular scan in the region corresponding to the multilayer period and an incident photon energy according to Bragg's law. The experimental results indicate that Pd does not chemically react with B nor C at the Pd–B4C interface while Y does react at the Y–B4C interface. The formation of Y–B or Y–C chemical compounds could be the reason why the interfaces are stabilized. By comparing the experimentally obtained angular variation of the characteristic photoemission with theoretical calculations, the depth distribution of each component element can be interpreted.  相似文献   

16.
Etched multilayers obtained by forming a laminar grating pattern within interferential multilayer mirrors are used in the soft X‐ray range to improve the spectral resolution of wavelength dispersive spectrometers equipped with periodic multilayers. We describe the fabrication process of such an etched multilayer dispersive element, its characterization through reflectivity measurement and simulations, and its implementation in a high‐resolution Johann‐type spectrometer. The specially designed patterning of a Mo/B4C multilayer is found fruitful in the range of the C K emission as the diffraction pattern narrows by a factor 4 with respect to the non‐etched structure. This dispersive element with an improved spectral resolution was successfully implemented for electronic structure study with an improved spectral resolution by X‐ray emission spectroscopy. As first results, we present the distinction between the chemical states of carbon atoms in various compounds, such as graphite, SiC and B4C, by the different shape of their C K emission band. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Thermal stability of Co/C multilayers prepared by a dual-facing-target sputtering system was studied. A picture of the thermally induced changes in the microstructure was obtained using complementary measurement techniques including low-angle and high-angle X-ray diffraction, transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. It was found that the period expansion, reflectivity change and compound formation, that were observed after annealing are caused by structural changes both in the sublayers and at the interfaces. Below 400°C, the period expansion is mainly caused by the graphitization of the amorphous carbon layers, and a significant increase in the reflectivity at grazing incidence was observed. By 500°C, the crystallization and agglomeration of Co layers induce an enormous period expansion and a serious decrease in reflectivity. A small amount of carbide is found to form at this temperature. Our results imply that new multilayer structures, e.g., compound multilayers will have to be developed for use at high temperatures or under high X-ray incident flux.  相似文献   

18.
The adsorption of cyclohexane on Ru(001) at 90 K has been investigated by thermal desorption mass spectrometry, EELS, UV photoemission and LEED. Thermal desorption indicates the adsorption of the undissociated molecule first in a chemisorbed monolayer (Td = 200 K) with subsequent formation of multilayers (Td = 165 K) at higher exposures. The vibrational spectrum obtained by EELS is characterized by a frequency shift of the C-H stretching mode from 2920 cm?1 (multilayer) to 2560 cm?1 for the chemisorbed monolayer. Off-specular EELS data indicate two different electron scattering mechanisms for the C-H stretching mode. Whereas for the C-H stretching mode of the multilayer, large angle electron impact scattering is observed, the C-H soft-mode of the monolayer is largely due to small angle dipolar scattering. The He I photoelectron spectra of cyclohexane multilayers are characteristic of the undissociated molecule. A new assignment of C(2s) and the lowest C(2p) level, based on a comparison with benzene, shows that the chemisorbed monolayer is characterized by the absence of emission or broadening of the 2a1u level. This is attributed to C3v symmetry of the chemisorbed layer and to a possible interaction of the 2aIu orbital with the metal surface.  相似文献   

19.
Six Al(1%wtSi)/Zr multilayers are deposited on Si substrates by using the direct-current magnetron sputtering system, and annealed from 100?°C to 500?°C temperature in a vacuum furnace for 1?h. To evaluate the thermal stability of Al(1%wtSi)/Zr multilayers, the multilayers were characterized by grazing incidence X-ray reflectance, X-ray diffraction, X-ray emission spectroscopy, and near-normal incident extreme ultraviolet (EUV) reflection. The symmetric and asymmetric interlayer models are used to present the interfacial structure before and after 300?°C. The Al(1%wtSi)/Zr multilayer annealed up to 200?°C maintains the initial symmetric multilayer structure, and keeps almost the similar EUV reflectivity as the nonannealed sample. From 300?°C, interdiffusion is much greater at the Zr/Al interface compared with the Al/Zr interface. And the interfacial phases of Al-Zr alloy transform from amorphous to polycrystalline, which induces the deterioration of multilayer structure and the decrease of EUV reflectivity. However, up to 500?°C, the polycrystalline Al-Zr compound does not destroy the multilayer completely.  相似文献   

20.
An integration method is demonstrated for directly determining the average interface statistics of periodic multilayers from the X‐ray scattering diagram. By measuring the X‐ray scattering diagram in the out‐of‐plane geometry and integrating the scattered intensity along the vertical momentum transfer qz in an interval, which is decided by the thickness ratio Γ (ratio of sublayer's thickness to periodic thickness), the cross‐correlations between different interfaces are canceled and only the autocorrelations are reserved. Then the multilayer can be treated as a `single interface' and the average power spectral density can be obtained without assuming any vertical correlation model. This method has been employed to study the interface morphology of sputter‐deposited W/Si multilayers grown at an Ar pressure of 1–7 mTorr. The results show an increase in vertical correlation length and a decrease in lateral correlation length with increased Ar pressure. The static roughness exponent α = 0 and dynamic growth exponent z = 2 indicate the Edwards–Wilkinson growth model at an Ar pressure of 1–5 mTorr. At an Ar pressure of 7 mTorr, α = 0.35 and z = 1.65 indicate the Kardar–Parisi–Zhang growth model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号