首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platinum is one of the most common coatings used to optimize mirror reflectivity in soft X‐ray beamlines. Normal operation results in optics contamination by carbon‐based molecules present in the residual vacuum of the beamlines. The reflectivity reduction induced by a carbon layer at the mirror surface is a major problem in synchrotron radiation sources. A time‐dependent photoelectron spectroscopy study of the chemical reactions which take place at the Pt(111) surface under operating conditions is presented. It is shown that the carbon contamination layer growth can be stopped and reversed by low partial pressures of oxygen for optics operated in intense photon beams at liquid‐nitrogen temperature. For mirrors operated at room temperature the carbon contamination observed for equivalent partial pressures of CO is reduced and the effects of oxygen are observed on a long time scale.  相似文献   

2.
Carbon contamination of optics is a serious issue in all soft X‐ray beamlines because it decreases the quality of experimental data, such as near‐edge X‐ray absorption fine structure, resonant photoemission and resonant soft X‐ray emission spectra in the carbon K‐edge region. Here an in situ method involving the use of oxygen activated by zeroth‐order synchrotron radiation was used to clean the optics in a vacuum ultraviolet and soft X‐ray undulator beamline, BL‐13A at the Photon Factory in Tsukuba, Japan. The carbon contamination of the optics was removed by exposing them to oxygen at a pressure of 10?1–10?4 Pa for 17–20 h and simultaneously irradiating them with zeroth‐order synchrotron radiation. After the cleaning, the decrease in the photon intensity in the carbon K‐edge region reduced to 2–5%. The base pressure of the beamline recovered to 10?7–10?8 Pa in one day without baking. The beamline can be used without additional commissioning.  相似文献   

3.
In deep X‐ray lithography (DXRL), synchrotron radiation is applied to pattern polymer microstructures. At the Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source, a chromium‐coated grazing‐incidence X‐ray double‐mirror system is applied as a tunable low‐pass filter. In a systematic study, the surface conditions of the two mirrors are analyzed to determine the mirror reflectivity for DXRL process optimization, without the need for spectral analysis or surface probing: PMMA resist foils were homogeneously exposed and developed to determine development rates for mirror angles between 6 mrad and 12 mrad as well as for white light in the absence of the mirrors. Development rates cover almost five orders of magnitude for nominal exposure dose (deposited energy per volume) values of 1 kJ cm?3 to 6 kJ cm?3. The rates vary from case to case, indicating that the actual mirror reflectivity deviates from that of clean chromium assumed for the experiments. Fitting the mirror‐based development rates to the white‐light case as a reference, reflectivity correction factors are identified, and verified by experimental and numerical results of beam calorimetry. The correction factors are related to possible combinations of a varied chromium density, chromium oxidation and a carbon contamination layer. The best fit for all angles is obtained assuming 7.19 g cm?3 nominal chromium density, 0.5 nm roughness for all involved layers, and an oxide layer thickness of 25 nm with a carbon top coat of 50 nm to 100 nm. A simulation tool for DXRL exposure parameters was developed to verify that the development rates for all cases do coincide within a small error margin (achieving a reduction of the observed errors by more than two orders of magnitude) if the identified mirror surface conditions are considered when calculating the exposure dose.  相似文献   

4.
A practical method for operating existing undulator synchrotron beamlines at photon energies considerably higher than their standard operating range is described and applied at beamline 19‐ID of the Structural Biology Center at the Advanced Photon Source enabling operation at 30 keV. Adjustments to the undulator spectrum were critical to enhance the 30 keV flux while reducing the lower‐ and higher‐energy harmonic contamination. A Pd‐coated mirror and Al attenuators acted as effective low‐ and high‐bandpass filters. The resulting flux at 30 keV, although significantly lower than with X‐ray optics designed and optimized for this energy, allowed for accurate data collection on crystals of the small protein crambin to 0.38 Å resolution.  相似文献   

5.
Surface structural changes of a hydrogenated diamond-like carbon (DLC) film exposed to a hyperthermal atomic oxygen beam were investigated by Rutherford backscattering spectroscopy (RBS), synchrotron radiation photoelectron spectroscopy (SR-PES), and near-edge X-ray absorption fine structure (NEXAFS). It was confirmed that the DLC surface was oxidized and etched by high-energy collisions of atomic oxygen. RBS and real-time mass-loss data showed a linear relationship between etching and atomic oxygen fluence. SR-PES data suggested that the oxide layer was restricted to the topmost surface of the DLC film. NEXAFS data were interpreted to mean that the sp2 structure at the DLC surface was selectively etched by collisions with hyperthermal atomic oxygen, and an sp3-rich region remained at the topmost DLC surface. The formation of an sp3-rich layer at the DLC surface led to surface roughening and a reduced erosion yield relative to the pristine DLC surface.  相似文献   

6.
DESIRS is a new undulator‐based VUV beamline on the 2.75 GeV storage ring SOLEIL (France) optimized for gas‐phase studies of molecular and electronic structures, reactivity and polarization‐dependent photodynamics on model or actual systems encountered in the universe, atmosphere and biosphere. It is equipped with two dedicated endstations: a VUV Fourier‐transform spectrometer (FTS) for ultra‐high‐resolution absorption spectroscopy (resolving power up to 106) and an electron/ion imaging coincidence spectrometer. The photon characteristics necessary to fulfill its scientific mission are: high flux in the 5–40 eV range, high spectral purity, high resolution, and variable and well calibrated polarizations. The photon source is a 10 m‐long pure electromagnetic variable‐polarization undulator producing light from the very near UV up to 40 eV on the fundamental emission with tailored elliptical polarization allowing fully calibrated quasi‐perfect horizontal, vertical and circular polarizations, as measured with an in situ VUV polarimeter with absolute polarization rates close to unity, to be obtained at the sample location. The optical design includes a beam waist allowing the implementation of a gas filter to suppress the undulator high harmonics. This harmonic‐free radiation can be steered toward the FTS for absorption experiments, or go through a highly efficient pre‐focusing optical system, based on a toroidal mirror and a reflective corrector plate similar to a Schmidt plate. The synchrotron radiation then enters a 6.65 m Eagle off‐plane normal‐incidence monochromator equipped with four gratings with different groove densities, from 200 to 4300 lines mm?1, allowing the flux‐to‐resolution trade‐off to be smoothly adjusted. The measured ultimate instrumental resolving powers are 124000 (174 µeV) around 21 eV and 250000 (54 µeV) around 13 eV, while the typical measured flux is in the 1010–1011 photons s?1 range in a 1/50000 bandwidth, and 1012–1013 photons s?1 in a 1/1000 bandwidth, which is very satisfactory although slightly below optical simulations. All of these features make DESIRS a state‐of‐the‐art VUV beamline for spectroscopy and dichroism open to a broad scientific community.  相似文献   

7.
8.
The triple‐resonant (TR) second‐order Raman scattering mechanism in graphene is re‐examined. It is shown that the magnitude of the TR contribution to the photon‐G′ mode coupling function in graphene is one order of magnitude larger than the widely accepted two‐resonant coupling. Enhancement of the order of 100 in the Raman intensity, with respect to the usual double‐resonant model, is found for the G′ band in graphene, and is expected in the related sp2‐based carbon materials, as well. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Three‐photon absorption (3PA) properties of symmetric‐type carbazole derivatives show great potential for application in light‐activated therapy and optical limiting. A novel symmetrical carbazole derivative (abbreviated as POCP) with end‐groups of 1,10‐phenanthroline rings as the donor moieties, chained via carbon–nitrogen (C = N) double bond, has been synthetized and its three photon absorption properties has been also determined by using a Q‐switched Nd: YAG laser pumped with 30 ps pulses at 1064 nm in dimethylformamide. The measurement of 3PA cross‐section of this compound is performed by open aperture Z‐scan and σ3PA is 481 × 10–78 cm6 ? s2/photon2 for the transition S0S1. The influence of the molecular structure of this compound on three‐photon absorption cross‐sections is discussed micromechanically by Austin model 1 and Zerner's Intermediate Neglect of Differential Overlap/S method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Raman spectroscopy is widely used for the characterization of bonding type in carbon‐based materials, including carbonized surface layer in ion‐implanted polymers. Studies of the polarization properties of Raman scattering from amorphous carbonaceous materials, however, are very scarce. In this paper, we investigate the polarized Raman spectra of polymethylmethacrylate (PMMA) implanted with 50‐keV Si+ ions at fluences in the range 3.2 × 1014–1.0 × 1017 ions/cm2 and for different visible excitation wavelengths. The spectra of the implanted samples are dominated by the D‐ and G‐bands of sp2 carbon, which evidence strong carbonization of the ion‐modified layer. The multiwavelength excitation allowed us to resonantly probe the depolarization ratios for sp2 clusters of different sizes. We established that the depolarization ratio ρG of the G‐band correlates with the sp2 cluster size approaching the random orientation limit of 0.75 for the smallest clusters and a limiting value of 0.41 for the largest clusters. The experimental findings give evidence for a preferable orientation of the larger size clusters with their hexagonal planes perpendicular to the surface of the sample. A plausible explanation for such an arrangement is that the sp2 clusters form tile‐like arrangements along the ion tracks. This finding may give clues for understanding of the strong transconductance of the ion‐modified layer, and open prospects for the application of polarized Raman spectroscopy as a characterization tool for surface morphology in ion‐implanted materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The Raman spectra of 3‐(pent‐1‐enyl) methyl ether (3‐methoxypent‐1‐ene) and four deuterium‐labelled analogues are reported and discussed. Correlations between specific structural features and the associated Raman bands are developed, with a view to enhancing the analytical application of Raman spectroscopy in investigating materials containing an alkenyl group. Particular attention is given to developing means of distinguishing the methyl group attached to the carbon skeleton from that of the methoxy group, to maximize the analytical utility of the signals associated with ν(sp2 CH), ν(sp2 CH2) and ν(CC) stretching vibrations, and to interpreting in more detail certain δ(sp2 CH) and δ(sp2 CH2) vibrations of the atoms of the double bond. These results establish a definitive spectroscopic protocol for differentiating a methoxy group from a methyl substituent attached directly to a carbon atom in unsaturated ethers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The first application of a pnCCD detector for X‐ray scattering experiments using white synchrotron radiation at BESSY II is presented. A Cd arachidate multilayer was investigated in reflection geometry within the energy range 7 keV < E < 35 keV. At fixed angle of incidence the two‐dimensional diffraction pattern containing several multilayer Bragg peaks and respective diffuse‐resonant Bragg sheets were observed. Since every pixel of the detector is able to determine the energy of every incoming photon with a resolution ΔE/E? 10?2, a three‐dimensional dataset is finally obtained. In order to achieve this energy resolution the detector was operated in the so‐called single‐photon‐counting mode. A full dataset was evaluated taking into account all photons recorded within 105 detector frames at a readout rate of 200 Hz. By representing the data in reciprocal‐space coordinates, it becomes obvious that this experiment with the pnCCD detector provides the same information as that obtained by combining a large number of monochromatic scattering experiments using conventional area detectors.  相似文献   

13.
Energy‐domain grazing‐incidence 57Fe‐Mössbauer spectroscopy (E‐GIMS) with synchrotron radiation (SR) has been developed to study surface and interface structures of thin films. Highly brilliant 57Fe‐Mössbauer radiation, filtered from SR by a 57FeBO3 single‐crystal nuclear Bragg monochromator, allows conventional Mössbauer spectroscopy to be performed for dilute 57Fe in a mirror‐like film in any bunch‐mode operation of SR. A theoretical and experimental study of the specular reflections from isotope‐enriched (57Fe: 95%) and natural‐abundance (57Fe: ~2%) iron thin films has been carried out to clarify the basic features of the coherent interference between electronic and nuclear resonant scattering of 57Fe‐Mössbauer radiation in thin films. Moreover, a new surface‐ and interface‐sensitive method has been developed by the combination of SR‐based E‐GIMS and the 57Fe‐probe layer technique, which enables us to probe interfacial complex magnetic structures in thin films with atomic‐scale depth resolution.  相似文献   

14.
Phosgene and its analogs are greatly harmful to the public health, environmental safety and homeland security as widely used industrial substances with extremely high toxicity. In order to rapidly evaluate the emergency risk caused by these chemicals, a new highly sensitive method based on surface‐enhanced Raman spectroscopy (SERS) technique for measurement of phosgene agents was developed for the first time. Coupled with a chemical transformation approach, the highly toxic phosgene was conveniently converted to a SERS‐sensitive probe, i.e. iodine (I2), with low toxicity or non‐toxicity. The characteristic SERS peak in 459 cm−1 was used for quantitation and was presumed as a formation of triiodide anion (I3), which was induced in an iodide (I)‐aggregation Au NPs system. The total measurement can be completed in ~20 min with the limits of detection of ~60 µg/l (phosgene) and ~30 µg/l (diphosgene), respectively, on a portable Raman spectrometer. This work is the first report of SERS measurement on phosgene and diphosgene in a quantitative level. This method is expected to meet the requirements of on‐site detection of phosgene agents, promote emergency responses and raise more opportunities for the portable SERS applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Plasmonic systems based on metal nanoparticles on a metal film with high optical absorption have generated great interests for surface‐enhanced Raman scattering (SERS). In this study, we prepare a broadband‐visible light absorber consisting Au nanotriangles on the surface of a continuous optically opaque gold film separated with a dielectric SiO2 layer, which is a typical metal‐insulator‐metal (MIM) system, and demonstrate it as an efficient SERS substrate. The MIM nanostructure, prepared using nanosphere lithography with a very large area, shows a broadband with absorption exceeding 90% in the wavelength regime of 630–920 nm. We observe an average SERS enhancement factor (EF) as large as 4.9 × 106 with a 22‐fold increase compared to a single layer of Au nanotriangles directly on a quartz substrate. A maximum SERS EF can be achieved by optimizing the thicknesses of the dielectric layer to control the optical absorption. Owing to the simple, productive, and inexpensive fabrication technique, our MIM nanostructure could be a potential candidate for SERS applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The radiation from an undulator reflected from one or more optical elements (usually termed `pink‐beam') is used in photon‐hungry experiments. The optical elements serve as a high‐energy cutoff and for focusing purposes. One of the issues with this configuration is maintaining the focal spot dimension as the energy of the undulator is varied, since this changes the heat load absorbed by the first optical element. Finite‐element analyses of the power absorbed by a side water‐cooled mirror exposed to the radiation emitted by an undulator at the Advanced Photon Source (APS) and at the APS after the proposed upgrade (APSU) reveals that the mirror deformation is very close to a convex cylinder creating a virtual source closer to the mirror than the undulator source. Here a simple optical system is described based on a Kirkpatrick–Baez pair which keeps the focus size to less than 2 µm (in the APSU case) with a working distance of 350 mm despite the heat‐load‐induced change in source distance. Detailed ray tracings at several photon energies for both the APS and APSU show that slightly decreasing the angle of incidence on the mirrors corrects the change in the `virtual' position of the source. The system delivers more than 70% of the first undulator harmonic with very low higher‐orders contamination for energies between 5 and 10 keV.  相似文献   

17.
18.
Multilayer optical elements for hard X‐rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite‐element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X‐ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (107) can lead to a huge number of elements for the finite‐element model. For instance, meshing by the size of the layers will require more than 1016 elements, which is an impossible task for present‐day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 106), which causes low solution accuracy; and the number of elements is still very large (106). In this work, by use of ANSYS layer‐functioned elements, a thermal‐structural FEA model has been implemented for multilayer X‐ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.  相似文献   

19.
This work reports an unconventional defect engineering approach using synchrotron‐radiation‐based X‐rays on ceria nanocrystal catalysts of particle sizes 4.4–10.6 nm. The generation of a large number of oxygen‐vacancy defects (OVDs), and therefore an effective reduction of cations, has been found in CeO2 catalytic materials bombarded by high‐intensity synchrotron X‐ray beams of beam size 1.5 mm × 0.5 mm, photon energies of 5.5–7.8 keV and photon fluxes up to 1.53 × 1012 photons s?1. The experimentally observed cation reduction was theoretically explained by a first‐principles formation‐energy calculation for oxygen vacancy defects. The results clearly indicate that OVD formation is mainly a result of X‐ray‐excited core holes that give rise to valence holes through electron down conversion in the material. Thermal annealing and subvalent Y‐doping were also employed to modulate the efficiency of oxygen escape, providing extra control on the X‐ray‐induced OVD generating process. Both the core‐hole‐dominated bond breaking and oxygen escape mechanisms play pivotal roles for efficient OVD formation. This X‐ray irradiation approach, as an alternative defect engineering method, can be applied to a wide variety of nanostructured materials for physical‐property modification.  相似文献   

20.
The electroluminescence intensity of the phenanthrene‐functionalized gold nanoparticles, PMPT‐Au nanoparticles/CPB: Ir(PIA)2 (acac) film, was increased by 4.9 times compared with control device, CPB: Ir(PIA)2 (acac) due to coupling between the excitons of emissive layer and localized surface plasmonic resonance of PMPT‐Au NPs. The maximum luminous efficiencies of devices II to IV with PMPT‐Au NPs were 39.2 cd A?1 (11.8 V), 40.1 cd A?1 (10.5 V), and 43.1 cd A?1 (9.0 V), respectively. The increment of current efficiency with PMPT‐Au NP coated devices was strongly related to the energy transfer between the radiated light generated from CBP: Ir(PIA)2 (acac) emissive layer and localized surface plasmonic resonance excited by PMPT‐Au NP layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号