首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X‐ray absorption and scattering spectroscopies involving the 3d transition‐metal K‐ and L‐edges have a long history in studying inorganic and bioinorganic molecules. However, there have been very few studies using the M‐edges, which are below 100 eV. Synchrotron‐based X‐ray sources can have higher energy resolution at M‐edges. M‐edge X‐ray absorption spectroscopy (XAS) and resonant inelastic X‐ray scattering (RIXS) could therefore provide complementary information to K‐ and L‐edge spectroscopies. In this study, M2,3‐edge XAS on several Co, Ni and Cu complexes are measured and their spectral information, such as chemical shifts and covalency effects, are analyzed and discussed. In addition, M2,3‐edge RIXS on NiO, NiF2 and two other covalent complexes have been performed and different dd transition patterns have been observed. Although still preliminary, this work on 3d metal complexes demonstrates the potential to use M‐edge XAS and RIXS on more complicated 3d metal complexes in the future. The potential for using high‐sensitivity and high‐resolution superconducting tunnel junction X‐ray detectors below 100 eV is also illustrated and discussed.  相似文献   

2.
3.
Results of computer simulations of the transmission of an X‐ray beam through a two‐dimensional photonic crystal as well as the propagation of an X‐ray beam in free space behind the photonic crystal are reported. The photonic crystal consists of a square lattice of silicon cylinders of diameter 0.5 µm. The amount of matter in the path of the X‐ray beam rapidly decreases at the sides of the cylinder projections. Therefore the transmission is localized near the boundaries, and appears like a channeling effect. The iterative method of computer simulations is applied. This method is similar to the multi‐slice method that is widely used in electron microscopy. It allows a solution to be obtained with acceptable accuracy. A peculiarity in the intensity distribution inside the Talbot period zT in free space was found when the intensity is approximately equal to the initial value at a distance 0.46zT, and it is shifted by half a period at distance 0.5zT. The reason for this effect is the existence of a periodic phase of the wavefunction of radiation inside the intensity peaks. Simulations with zero phase do not show this effect. Symmetry rules for the Talbot effect are discussed.  相似文献   

4.
This work concerns determination of the manganese valence state and speciation by wavelength‐dispersive X‐ray fluorescence analysis. The authors investigated the effect of the manganese valence state and speciation on the intensity of some К‐series lines of the X‐ray emission spectrum for the samples of manganese compounds. The intensities of MnKβ5 line and MnKβ′ satellite are least influenced by speciation, and they may be used for evaluating the manganese valence state for the samples containing low iron. The intensities of MnKβ″ and MnKβx satellites may be employed for assessing the manganese speciation. The results of X‐ray fluorescence determination of the manganese valence state and speciation in the manganese ores of the South Ural deposits agree with the X‐ray diffraction data. The X‐ray fluorescence method is definitely advantageous, because it does not require a complicated process of sample preparation and allows to receive fast information on the manganese valence state and speciation with the purpose to assess the quality of manganese ores. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Au–Pt bimetallic nanoparticles have been synthesized through a one‐pot synthesis route from their respective chloride precursors using block copolymer as a stabilizer. Growth of the nanoparticles has been studied by simultaneous in situ measurement of X‐ray absorption spectroscopy (XAS) and UV–Vis spectroscopy at the energy‐dispersive EXAFS beamline (BL‐08) at Indus‐2 SRS at RRCAT, Indore, India. In situ XAS spectra, comprising both X‐ray near‐edge structure (XANES) and extended X‐ray absorption fine‐structure (EXAFS) parts, have been measured simultaneously at the Au and Pt L3‐edges. While the XANES spectra of the precursors provide real‐time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed in the intermediate stages of growth. This insight into the formation process throws light on how the difference in the reduction potential of the two precursors could be used to obtain the core–shell‐type configuration of a bimetallic alloy in a one‐pot synthesis method. The core–shell‐type structure of the nanoparticles has also been confirmed by ex situ energy‐dispersive spectroscopy line‐scan and X‐ray photoelectron spectroscopy measurements with in situ ion etching on fully formed nanoparticles.  相似文献   

6.
The X‐ray PIV (particle image velocimetry) technique has been used as a non‐invasive measurement modality to investigate the haemodynamic features of blood flow. However, the extraction of two‐dimensional velocity field data from the three‐dimensional volumetric information contained in X‐ray images is technically unclear. In this study, a new two‐dimensional velocity field extraction technique is proposed to overcome technological limitations. To resolve the problem of finding a correction coefficient, the velocity field information obtained by X‐ray PIV and micro‐PIV techniques for disturbed flow in a concentric stenosis with 50% severity was quantitatively compared. Micro‐PIV experiments were conducted for single‐plane and summation images, which provide similar positional information of particles as X‐ray images. The correction coefficient was obtained by establishing the relationship between velocity data obtained from summation images (VS) and centre‐plane images (VC). The velocity differences between VS and VC along the vertical and horizontal directions were quantitatively analysed as a function of the geometric angle of the test model for applying the present two‐dimensional velocity field extraction technique to a conduit of arbitrary geometry. Finally, the two‐dimensional velocity field information at arbitrary positions could be successfully extracted from X‐ray images by using the correction coefficient and several velocity parameters derived from VS.  相似文献   

7.
A spectrometer for resonant inelastic X‐ray scattering (RIXS) is proposed where imaging and dispersion actions in two orthogonal planes are combined to deliver a full two‐dimensional map of RIXS intensity in one shot with parallel detection at incoming hvin and outgoing hvout photon energies. Preliminary ray‐tracing simulations with a typical undulator beamline demonstrate a resolving power well above 11000 with both hvin and hvout near 930 eV, with a vast potential for improvement. Combining this instrument – nicknamed hv2 spectrometer – with an X‐ray free‐electron laser source simplifies its technical implementation and enables efficient time‐resolved RIXS experiments.  相似文献   

8.
The X‐ray mass attenuation coefficients of silver were measured in the energy range 5–20 keV with an accuracy of 0.01–0.2% on a relative scale down to 5.3 keV, and of 0.09–1.22% on an absolute scale to 5.0 keV. This analysis confirms that with careful choice of foil thickness and careful correction for systematics, especially including harmonic contents at lower energies, the X‐ray attenuation of high‐Z elements can be measured with high accuracy even at low X‐ray energies (<6 keV). This is the first high‐accuracy measurement of X‐ray mass attenuation coefficients of silver in the low energy range, indicating the possibility of obtaining high‐accuracy X‐ray absorption fine structure down to the L1 edge (3.8 keV) of silver. Comparison of results reported here with an earlier data set optimized for higher energies confirms accuracy to within one standard error of each data set collected and analysed using the principles of the X‐ray extended‐range technique (XERT). Comparison with theory shows a slow divergence towards lower energies in this region away from absorption edges. The methodology developed can be used for the XAFS analysis of compounds and solutions to investigate structural features, bonding and coordination chemistry.  相似文献   

9.
The use of in situ time‐resolved dispersive X‐ray absorption spectroscopy (DXAS) to monitor the formation of Cu2(OH)3Cl particles in an aqueous solution is reported. The measurements were performed using a dedicated reaction cell, which enabled the evolution of the Cu K‐edge X‐ray absorption near‐edge spectroscopy to be followed during mild chemical synthesis. The formed Cu2(OH)3Cl particles were also characterized by synchrotron‐radiation‐excited X‐ray photoelectron spectroscopy, X‐ray diffraction and scanning electron microscopy. The influence of polyvinylpyrrolidone (PVP) on the electronic and structural properties of the formed particles was investigated. The results indicate clearly the formation of Cu2(OH)3Cl, with or without the use of PVP, which presents very similar crystalline structures in the long‐range order. However, depending on the reaction, dramatic differences were observed by in situ DXAS in the vicinities of the Cu atoms.  相似文献   

10.
The characteristics of the X‐ray attenuation in electrospun nano(n)‐ and micro(m)‐Bi2O3/polylactic acid (PLA) nanofibre mats with different Bi2O3 loadings were compared as a function of energy using mammography (i.e. tube voltages of 22–49 kV) and X‐ray absorption spectroscopy (XAS) (7–20 keV). Results indicate that X‐ray attenuation by electrospun n‐Bi2O3/PLA nanofibre mats is distinctly higher than that of m‐Bi2O3/PLA nanofibre mats at all energies investigated. In addition, with increasing filler loading (n‐Bi2O3 or m‐Bi2O3), the porosity of the nanofibre mats decreased, thus increasing the X‐ray attenuation, except for the sample containing 38 wt% Bi2O3 (the highest loading in the present study). The latter showed higher porosity, with some beads formed, thus resulting in a sudden decrease in the X‐ray attenuation.  相似文献   

11.
Gold and silver in dross were determined by energy‐dispersive X‐ray fluorescence technique. Sample was prepared by pressed pellet method using microcrystalline cellulose powder as binder, and a method of standard additions was used for quantification. Lβ X‐ray of gold (11.4 keV) and Kβ X‐ray of silver (24.9 keV) were used for analysis. The measured concentrations of gold and silver were 132 ± 8 and 1181 ± 84 mg kg?1, respectively. The results were validated by instrumental neutron activation analysis technique. The t‐test indicated that there was no significant difference between results obtained by the two techniques. Energy‐dispersive X‐ray fluorescence is a simple, precise and accurate technique for the determination of gold and silver in dross. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The effects of varying LiPF6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium‐ion battery electrolyte solvents (ethylene carbonate–dimethyl carbonate and propylene carbonate) have been investigated. X‐ray Raman scattering spectroscopy (a non‐resonant inelastic X‐ray scattering method) was utilized together with a closed‐circle flow cell. Carbon and oxygen K‐edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li+ ion concentration in the solvent manifests itself as a blue‐shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K‐edge results agree with previous soft X‐ray absorption studies on LiBF4 salt concentration in propylene carbonate, carbon K‐edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.  相似文献   

13.
An X‐ray magnetic circular dichroism experiment under multiple extreme conditions, 2 ≤T≤ 300 K, H≤ 10 T and P≤ 50 GPa, has been achieved at SPring‐8 BL39XU. A combination of the high‐brilliant X‐ray beam and a helicity‐controlled technique enabled the dichroic signal to be recorded with high accuracy. The performance is shown by the outcome of pressure‐induced ferromagnetism in Mn3GaC and the pressure‐suppressed Co moment in ErCo2. Two technical developments, a tiny diamond anvil cell inserted into a superconducting magnet and in situ pressure calibration using 90° Bragg diffraction from a NaCl marker, are also presented. X‐ray magnetic spectroscopy under multiple extreme conditions is now opening a new approach to materials science.  相似文献   

14.
The local structure and lattice dynamics in cubic Y2O3 were studied at the Y K‐edge by X‐ray absorption spectroscopy in the temperature range from 300 to 1273 K. The temperature dependence of the extended X‐ray absorption fine structure was successfully interpreted using classical molecular dynamics and a novel reverse Monte Carlo method, coupled with the evolutionary algorithm. The obtained results allowed the temperature dependence of the yttria atomic structure to be followed up to ~6 Å and to validate two force‐field models.  相似文献   

15.
The 2–4 keV energy range provides a rich window into many facets of materials science and chemistry. Within this window, P, S, Cl, K and Ca K‐edges may be found along with the L‐edges of industrially important elements from Y through to Sn. Yet, compared with those that cater for energies above ca. 4–5 keV, there are relatively few resources available for X‐ray spectroscopy below these energies. In addition, in situ or operando studies become to varying degrees more challenging than at higher X‐ray energies due to restrictions imposed by the lower energies of the X‐rays upon the design and construction of appropriate sample environments. The XMaS beamline at the ESRF has recently made efforts to extend its operational energy range to include this softer end of the X‐ray spectrum. In this report the resulting performance of this resource for X‐ray spectroscopy is detailed with specific attention drawn to: understanding electrostatic and charge transfer effects at the S K‐edge in ionic liquids; quantification of dilution limits at the Cl K‐ and Rh L3‐edges and structural equilibria in solution; in vacuum deposition and reduction of [RhI(CO)2Cl]2 to γ‐Al2O3; contamination of γ‐Al2O3 by Cl and its potential role in determining the chemical character of supported Rh catalysts; and the development of chlorinated Pd catalysts in `green' solvent systems. Sample environments thus far developed are also presented, characterized and their overall performance evaluated.  相似文献   

16.
A portable ultrahigh‐vacuum system optimized for in situ variable‐temperature X‐ray scattering and spectroscopy experiments at synchrotron radiation beamlines was constructed and brought into operation at the synchrotron radiation facility ANKA of the Karlsruhe Institute of Technology, Germany. Here the main features of the new instrument are described and its capabilities demonstrated. The surface morphology, structure and stoichiometry of EuSi2 nano‐islands are determined by in situ grazing‐incidence small‐angle X‐ray scattering and X‐ray absorption spectroscopy. A size reduction of about a factor of two of the nano‐islands due to silicide decomposition and Eu desorption is observed after sample annealing at 1270 K for 30 min.  相似文献   

17.
Many researchers have pointed out that there is a quantum critical point (QCP) in the F‐doped SmOFeAs system. In this paper, the electronic structure and local structure of the superconductive FeAs layer in SmO1–xFxFeAs as a function of the F‐doping concentration have been investigated using Fe and As K‐edge X‐ray absorption spectroscopy. Experiments performed on the X‐ray absorption near‐edge structure showed that in the vicinity of the QCP the intensity of the pre‐edge feature at the Fe‐edge decreases continuously, while there is a striking rise of the shoulder‐peak at the As edge, suggesting the occurrence of charge redistribution near the QCP. Further analysis on the As K‐edge extended X‐ray absorption fine structure demonstrated that the charge redistribution originates mostly from a shortening of the Fe—As bond at the QCP. An evident relationship between the mysterious QCP and the fundamental Fe—As bond was established, providing new insights on the interplay between QCP, charge dynamics and the local structural Fe—As bond in Fe‐based superconductors.  相似文献   

18.
Surface‐sensitive analysis via extended X‐ray absorption fine‐structure (EXAFS) spectroscopy is demonstrated using a thickness‐defined SiO2 (12.4 nm)/Si sample. The proposed method exploits the differential electron yield (DEY) method wherein Auger electrons escaping from a sample surface are detected by an electron analyzer. The DEY method removes local intensity changes in the EXAFS spectra caused by photoelectrons crossing the Auger peak during X‐ray energy sweeps, enabling EXAFS analysis through Fourier transformation of wide‐energy‐range spectral oscillations. The Si K‐edge DEY X‐ray absorption near‐edge structure (XANES) spectrum appears to comprise high amounts of SiO2 and low Si content, suggesting an analysis depth, as expressed using the inelastic mean free path of electrons in general electron spectroscopy, of approximately 4.2 nm. The first nearest neighbor (Si—O) distance derived from the Fourier transform of the Si K‐edge DEY‐EXAFS oscillation is 1.63 Å. This value is within the reported values of bulk SiO2, showing that DEY can be used to detect a surface layer of 12.4 nm thickness with an analysis depth of approximately 4.2 nm and enable `surface EXAFS' analysis using Fourier transformation.  相似文献   

19.
The energy‐dependent scintillation intensity of Eu‐doped fluorozirconate glass‐ceramic X‐ray detectors has been investigated in the energy range from 10 to 40 keV. The experiments were performed at the Advanced Photon Source, Argonne National Laboratory, USA. The glass ceramics are based on Eu‐doped fluorozirconate glasses, which were additionally doped with chlorine to initiate the nucleation of BaCl2 nanocrystals therein. The X‐ray excited scintillation is mainly due to the 5d–4f transition of Eu2+ embedded in the BaCl2 nanocrystals; Eu2+ in the glass does not luminesce. Upon appropriate annealing the nanocrystals grow and undergo a phase transition from a hexagonal to an orthorhombic phase of BaCl2. The scintillation intensity is investigated as a function of the X‐ray energy, particle size and structure of the embedded nanocrystals. The scintillation intensity versus X‐ray energy dependence shows that the intensity is inversely proportional to the photoelectric absorption of the material, i.e. the more photoelectric absorption the less scintillation. At 18 and 37.4 keV a significant decrease in the scintillation intensity can be observed; this energy corresponds to the K‐edge of Zr and Ba, respectively. The glass matrix as well as the structure and size of the embedded nanocrystals have an influence on the scintillation properties of the glass ceramics.  相似文献   

20.
Time‐resolved X‐ray absorption spectroscopy (TR‐XAS), based on the laser‐pump/X‐ray‐probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR‐XAS data analysis is generally performed on the laser‐on minus laser‐off difference spectrum. Here, a new analysis scheme is presented for the TR‐XAS difference fitting in both the extended X‐ray absorption fine‐structure (EXAFS) and the X‐ray absorption near‐edge structure (XANES) regions. R‐space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non‐derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR‐XAS difference analysis of Fe(phen)3 spin crossover complex and yielded reliable distance change and excitation population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号