首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
应用电化学伏安法和表面增强拉曼光谱(SERS)研究在-1.0 V~0 V电位区间内胞嘧啶于粗糙金电极表面的吸附行为.结果表明,在本实验的电位区间,胞嘧啶是以其N3位垂直吸附在粗糙金电极表面的.在负电位区间环呼吸振动模的强度出现极大值,与其它振动模强度相比,作者认为电磁场的增强和电荷转移均使该谱峰的拉曼信号增强.胞嘧啶的环呼吸振动频率随着电位负移而红移,这意味着它与金电极的成键作用减弱.同时也表明SERS谱可用于研究生物分子在金属电极表面的吸附行为.  相似文献   

2.
本文采用氧化还原循环处理电极首次得到Ag/0.1 mol L~(-1)NH_3+0.1 mol L~(-1)NH_4Cl体系中吸附在银电极上氨分子的表面增强拉曼散射(SERS)效应。按氨分子在电极表面上的吸附量为每平方厘米8×10~(15)计算, 增加因子为1.2×10~5。谱峰强度及位置随电极电位改变。吸附氨分子的SERS谱与Ag(NH_3)_2~+的正常拉曼光谱类似。本文结果表明电极表面上存在Ag(δ+)络合物, 它可能是SERS效应的活性中心, 用这个概念可较好地解释本文实验结果。通过谱图分析给出了Ag(δ+)表面络合物的可能结构模式。  相似文献   

3.
本文采用氧化还原循环处理电极首次得到Ag/0.1mol L~(-1)NH_3+0.1mol L~(-1)NH_4Cl体系中吸附在银电极上氨分子的表面增强拉曼散射(SERS)效应。按氨分子在电极表面上的吸附量为每平方厘米8×10~(15)计算,增加因子为1.2×10~5.谱峰强度及位置随电极电位改变。吸附氨分子的SERS谱与Ag(NH_3)_2~+的正常拉曼光谱类似。本文结果表明电极表面上存在Ag(δ+)络合物,它可能是SERS效应的活性中心,用这个概念可较好地解释本文实验结果。通过谱图分析给出了Ag(δ+)表面络合物的可能结构模式。  相似文献   

4.
含水离子液体/金属界面结构的SERS研究   总被引:1,自引:1,他引:0  
利用表面增强拉曼光谱(SERS)研究了不同含水量下离子液体及水分子在银电极上随电位变化吸附方式的改变,通过水的O-H伸缩振动谱峰频率变化特征,详细探究了水在离子液体/电极界面上的存在形式及作用方式以及体系零电荷电位与水含量的关系.水含量较低时O-H伸缩振动的Stark系数值较低,随水含量的增加O-H伸缩振动的谱峰位置逐渐向高波数方向移动,同时O-H伸缩振动的Stark系数也逐渐增大,1molL-1[BMIM]Br水溶液中达到76cm-1V-1,且体系的零电荷电位正移,这些差异与水在离子液体中所形成氢键的程度及水分子的存在形式密切相关,在水的含量较低时水与离子液体阳离子通过氢键作用而存在于界面层中,当水的含量增加时,水分子间氢键的作用增强,水与电极表面直接作用的可能性增大.  相似文献   

5.
运用量子化学密度泛函DFT理论和拉曼光谱研究了吡啶在过渡金属(Ⅷ族)和币族金属(IB族)表面吸附的成键机理及其拉曼光谱的变化规律.总结了作者研究组有关吡啶-金属SERS体系的研究,并从化学成键机理和光驱电荷转移机理两个方面探讨了电化学界面SERS谱峰的频率位移和增强效应,解释了实验观测到的SERS光谱随金属电极材料、激发光波长以及电极电位变化的现象.  相似文献   

6.
本文研究了在吡啶-KC1水溶液中吡啶吸附在n-CdS电极上的表面增强喇曼散射(SERS)。在光照下,CdS电极经过正极化予处理数分钟,就能观察到吡啶吸附在CdS电极上的很强的SERS谱。其特征峰是1010和1036cm-1与纯吡啶的喇曼特征峰991,1030cm-1相比有了明显位移。又SERS谱随着吡啶浓度的增加而增强。外加电位对SERS也有一定影响,其曲线形状与CdS的I~V曲线很相似。对这些实验结果,本文用n型CdS电极的光电化学特性进行了初步的考察和讨论。  相似文献   

7.
将特殊的ORC方法、薄层溶液技术和差谱方法相结合,在较宽的电位区间(-0.7-2.0V),获得了不含任何(类)卤素离子的NaClO4/Ag体系中水的SERS谱.结果表明,不同浓度的NaClO4体系中,尽管体相水的结构有很大差别,但电极表面的吸附水有相似的结构特征,即由于电场作用而使有序性较高;并且随电极电位由极负电位向零电荷电位(PZC)变化时可能都经历着由单氢端吸附转变为双氢端吸附,继而又转向氧端吸附的取向变化过程.利用SERS技术特有的检测表面物种的高灵敏度,可观察到NaClO4浓度引起的表面水的SERS谱的一些细微差异,依此较详细讨论了NaClO4浓度对表面水的结构和取向变化过程的影响.  相似文献   

8.
硫脲在HNO3介质中共吸附行为的喇曼光谱研究   总被引:2,自引:0,他引:2  
用常规Raman谱、电化学现场表面增强喇曼散射光谱(SERS)和时间分辨SERS光谱(TRSERS)研究了硫脲(TU)在HNO3介质中与NO-3的共吸附行为.实验结果表明,NO3-离子能被TU诱导共吸附在其质子化氨基上;TU以S端按σ配位键方式化学吸附在银电极表面.在较正电位区间(≥-0.6V),TU垂直吸附,电位负移(≤-0.8V),TU由垂直逐渐转变为倾斜甚至平躺吸附;在较负的电位下(≤-0.8V),TU在HNO3介质中比在HClO4中更稳定,甚至在-2.0V的电位下亦能检测到TU的SERS信号.  相似文献   

9.
乐果涂膜表面增强拉曼光谱研究   总被引:2,自引:0,他引:2  
欧阳雨 《分析测试学报》2012,31(8):996-1000
通过蒸发乐果饱和水溶液在磁控溅射银膜上形成乐果涂膜,利用表面增强拉曼光谱(SERS)技术研究了乐果涂膜的分子振动特性,并与乐果固体拉曼谱进行比较。研究结果表明,乐果晶体结构长程有序性的破坏造成涂膜SERS体系中υ(P—S)和υ(PS)振动峰的展宽和蓝移,水解引起乐果δ(SPOC)和δs(COPOC)振动模式强度降低,OC—N键中的O原子和N原子以及水解质子化的O在银表面吸附造成υ(OC—N)、υ(OC)、δ(N—H)、υ(CN)、δ(C—N—C)、δ(OPO)和υ(P—O)等振动模式显著增强。这为利用SERS技术研究乐果溶液以及乐果在植物体、食品中的残留提供了实验和理论依据。  相似文献   

10.
用化学还原法合成了Aucore@Ptshell纳米粒子, 并用扫描电子显微镜(SEM)及X射线衍射(XRD)等技术对纳米粒子进行表征; 采用电化学原位表面增强拉曼光谱(SERS)技术对甲酸的电催化氧化过程进行了研究, 成功地获得了甲酸在Aucore@Ptshell/Pt电极上解离吸附的原位SERS. 结果显示, 在开路电位时, 甲酸能在Aucore@Ptshell/Pt电极表面自发氧化, 解离生成强吸附中间体COad和弱吸附中间体HCOOad, 在电位为+0.10 V时检测到氧化产物CO2的谱峰. 研究结果表明, Aucore@Ptshell/Pt电极对甲酸的氧化具有较高的催化活性和较强的SERS效应, 甲酸在Aucore@Ptshell/Pt电极上的电催化氧化过程遵循双途径机理.  相似文献   

11.
拓宽银电极上SERS活性的研究电位范围   总被引:1,自引:0,他引:1  
电极表面的粗糙化处理是进行表面增强拉曼光谱(SERS)研究的重要前提,通过研究两种截然不同的氧化还原循环(ORC)粗粗糙电极的方法,分析其SERS活性稳定电位区间与ORC还原电位之间的关系,发现高活性的SERS位皆处于亚稳状态,易随电极电位趋近零电位(PZC)而发生表面原子重排,以至推动活性,引入强吸附物种,可以使特殊ORC得到的SERS活性在PZC以正电位区稳定存在,并可在PZC以负一得到常规O  相似文献   

12.
The intensity of surface-enhanced Raman scattering (SERS) from thiocyanate and chloride adsorbed on silver electrodes is shown to depend critically on whether the electrode is illuminated during the oxidation-reduction cycle used to pretreat the electrode. The value and magnitude of the photoeffect is dependent upon the type of surface vibrational mode, the adsorbate and the wavelength of the radiation during the ORC. The effects are attributed to the production of SERS active clusters of Ag atoms by photoreduction of the Ag(I) phase films during the ORC.  相似文献   

13.
Confocal Raman microscopic measurements were performed on silver electrodes covered with hydrogenated amorphous carbon (a-C:H). When short accumulation time was used, the subsequently measured surface-enhanced Raman scattering (SERS) spectra exhibited fluctuations. As previously reported for other systems, the intensity of fluctuations of SERS spectra significantly decreases if O2 was removed from the ambient medium. In this contribution we show that intensive SERS fluctuations can be also observed for a-C:H/Ag samples immersed in the deoxygenated electrolyte after applying a negative potential pulse to the silver electrode. It means that the O2-mediated Burstein mechanism of SERS fluctuations, which has been previously proposed to explain the SERS O2 effect, is not adequate for these results. We suggest that oxygen chemisorbed on the silver surface decreases the average strength of the interaction between a-C:H clusters and the metal surface (and hence the speed of movement of a-C:H clusters across the metal surface) and that the SERS O2 effect should be rather explained using the "classical" model of SERS fluctuations, in which fluctuations are interpreted as a result of the thermally activated diffusion of carbon segments in and out of the SERS "hot spots". A numerical algorithm for modeling of the fluctuations of SERS intensity has been proposed, and some example simulations of SERS fluctuations have been carried out. For the first time, strongly fluctuating bands due to the stretching vibrations of significantly weakened C-H bonds have been identified.  相似文献   

14.
The effect of a roughening procedure on surface-enhanced Raman scattering (SERS) intensity of pyridine at copper and gold electrodes subjected to negative potential has been investigated. Among four procedures tested for a copper electrode the one consisting of electrochemical activation in a solution of LiCl and CuCl2 resulted in the most stable and effective surface. It was proved that the presence of pyridine during the pretreatment procedure caused a very fast, irreversible decay of SERS intensity for both copper and gold electrodes. Quite stable, at least at room temperatures, gold surfaces were obtained by oxidation-reduction cycles activation in KCl solution.  相似文献   

15.
This is the first report of in situ SER spectra of chemical species adsorbed on a Ag/room temperature ionic liquid (RTIL) interface. We have investigated the dependence of the SERS intensity of the RTIL derived from 1-n-butyl-3-methylimidazolium hexafluorophosfate (BMIPF6) adsorbed on a silver electrode. It has been shown that the BMI+ adsorbs on the silver electrode for potentials more negative than -0.4 V vs a Pt quasireference electrode (PQRE). In the -0.4 to -1.0 V potential range the SER spectra are similar to the Raman spectrum of the RTIL BMIPF6. At potentials more negative than -1.0 V some imidazolium ring vibrational modes and N-CH3 vibrations are enhanced, suggesting that the imidazolium ring is parallel to the surface and for potentials <-2.8 V the BMI+ is reduced to the BMI carbene. The potential dependence of the SERS intensities of Py adsorbed on a silver electrode in BMIPF6 has also been investigated. The results have shown that at potentials less negative than -0.8 V (vs PQRE) Py adsorbs at an end-on configuration forming an Ag-N bond. In the -0.9 to -1.4 V potential range Py molecules lie flat on the electrode surface and at potentials <-1.4 V Py is replaced by the BMI+. The electrochemical and SERS results have shown that Py has the effect of changing the oxidation of silver in that medium as well as the reduction of BMI+ to the BMI carbene. In the presence of Py the BMI+ reduction is observed at potentials near -2.4 V. The Ag electrode has presented SERS activity from 0.0 to -3.0 V.  相似文献   

16.
用表面增强拉曼光谱的方法研究 4-羟基--甲基-1,3,3a,7-四氮茚(TAI)在金属银上的吸附.实验表明TAI分子是通过分子上的N原子以化学吸附的方式吸附在银电极上.电极处理的氧化-还原循环次数并不影响振动频率,但在一定范围内对表面增强拉曼光谱的吸收强度有明显影响.  相似文献   

17.
A study has been performed in which the SERS intensity of the pyridine ring breathing vibration at 1008 cm−1 at Ag electrodes is found to be dependent upon both the large scale and atomic scale roughness of the electrode surface. The controlled surface morphology is generated by a double potential step ORC technique. Scanning electron microscopy of these surfaces reveals varying large scale surface morphologies that are dependent upon ORC rate. A correlation between SERS intensity and large scale surface morphology is interpreted in terms of significant contributions from electromagnetic effects in electrochemical SERS. The correlation between SERS intensity and this surface morphology is found to be independent of the presence of atomic scale roughness. The results presented here confirm and extend the results of previous investigations of the morphology of SERS-active surfaces.  相似文献   

18.
The synthesis of non-spherical spike-like gold-silver alloy nanoparticles on platinum substrates was first developed by sonoelectrochemical methods in this study. First, a silver substrate was roughened by a triangular-wave oxidation-reduction cycle (ORC) in an aqueous solution containing 0.1 M HCl. Silver-containing complexes were found in the solution after the ORC treatment. Then a gold substrate was subsequently roughened by the similar ORC treatment in the same silver complexes-containing solution. After this procedure, Au- and Ag-containing complexes were left in the solution. Subsequently, the Au working electrode was immediately replaced by a Pt electrode. A cathodic overpotential was applied under controlled sonication and slight stirring to synthesize Au-Ag alloy nanoparticles on the Pt substrate. Encouragingly, the surface-enhanced Raman scattering (SERS) of Rhodamine 6G on the Au-Ag alloy nanoparticles-deposited Pt substrate exhibits a higher intensity by eight-fold of magnitude and a better resolution, as compared to that obtained on the Au nanoparticles-deposited Pt substrate.  相似文献   

19.
'Pure' silver nanoparticles on silver electrode were prepared by magnetron sputtering. The silver-modified silver electrode has good stability and the silver nanoparticles on silver electrode have homogeneous size distribution. Compared with the silver colloid modified silver electrode, there were no any extraneous component ions on the electrode, for the modified silver nanoparticles are prepared by magnetron sputtering. Synchronously, we obtained much higher quality SERS spectra of adenine molecules on the silver electrode modified by magnetron sputtering (SEMMS), and the study of the adsorption behavior of adenine on the silver-modified silver electrode by surface enhanced Raman scattering (SERS) indicated that the silver-modified silver electrode was highly efficient substrates for SERS investigation. From the rich information on the SEMMS obtained from high-quality potential-dependent SERS, we may deduce the adsorption behavior of adenine and the probable SERS mechanism in the process. The probable reasons are given.  相似文献   

20.
We have recorded surface-enhanced Raman (SER) spectra of two different classes of compounds, cationic dyes and organic acids, and studied their chloride ion effects on the surface-enhanced Raman scattering (SERS) activities of the silver solution. For the positive charge dyes, rhodamine 6G (R6G) and 1,1'-dimethyl-2,2'-cyanine iodide (DECI), no SERS could be observed without the addition of chloride ions because of lack of the electrostatic interaction between the dye species and the silver particles in the silver solution. The chloride ions served to enlarge silver particles and to contribute the existence of the surface active sites, making the silver solution SERS active to the dye samples. Surface-enhanced resonance Raman scattering (SERRS) intensity of the dye molecules increased with the chloride ion concentration. After reaching a maximum intensity, a Cl- quenching effect on the intensity took place. For the organic acids, benzoic acid and p-aminobenzoic acid (PABA), SERS could be observed without the coexistence of chloride ions. The intensity of the Raman scattering did not vary significantly in the presence of small amount of chloride ion. At high Cl- concentration, quenching SERS intensity began to take effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号