首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the doping dependence of the penetration depth versus temperature in electron-doped Pr(2-x)Ce(x)CuO(4-delta) using a model which assumes the uniform coexistence of (mean-field) antiferromagnetism and superconductivity. Despite the presence of a d(x2-y2) pairing gap in the underlying spectrum, we find nodeless behavior of the low-T penetration depth in the underdoped case, in accord with experimental results. As doping increases, a linear-in-T behavior of the penetration depth, characteristic of d-wave pairing, emerges as the lower magnetic band crosses the Fermi level and creates a nodal Fermi surface pocket.  相似文献   

2.
Some implications of μSR experiments on high temperature superconductors are discussed. The possible relationship between the observation of spin freezing and the tendency of mobile holes to phase separate is considered. Measurements of the magnetic penetration depth as a function of doping are shown to imply that a non-retarded, or high energy scale pairing interaction is responsible for high temperature superconductivity. The depression of the transition temperature at high doping is associated with a crossover away from the regime in which a charge-transfer gap is relevant.  相似文献   

3.
We show that the unusual doping dependence of the isotope effects on transition temperature and zero temperature in-plane penetration depth naturally follows from the doping driven 3D-2D crossover and the 2D quantum superconductor to insulator transition in the underdoped limit. Since lattice distortions are the primary consequence of isotope substitution, our analysis clearly reveals the strong involvement of lattice degrees of freedom in mediating superconductivity.  相似文献   

4.
Within the framework of the kinetic energy driven superconductivity, the electromagnetic response in cuprate superconductors is studied in the linear response approach. The kernel of the response function is evaluated and employed to calculate the local magnetic field profile, the magnetic field penetration depth, and the superfluid density, based on the specular reflection model for a purely transverse vector potential. It is shown that the low temperature magnetic field profile follows an exponential decay at the surface, while the magnetic field penetration depth depends linearly on temperature, except for the strong deviation from the linear characteristics at extremely low temperatures. The superfluid density is found to decrease linearly with decreasing doping concentration in the underdoped regime. The problem of gauge invariance is addressed and an approximation for the dressed current vertex, which does not violate local charge conservation is proposed and discussed.  相似文献   

5.
The character of the penetration of superconducting correlations into multilayer FF…F, FNFN…FN, and NFNF…NF structures being in contact with a superconductor with the singlet pairing potential has been studied theoretically. Analytical expressions for the effective superconductivity penetration depth in such structures have been obtained in the limit of small layer thicknesses. Numerical calculations taking into account self-consistently the suppression of the superconductivity in the superconductor owing to the proximity effect have been performed at arbitrary thicknesses. A simple analytical dependence approximating the spatial variation of the Green’s function in a multilayer has been proposed. It has been shown that superconductivity is induced by the generation of two channels existing in parallel, one of which is characterized by the smooth (as in SN sandwiches) decay of the superconductivity, while damped oscillations (as in SF structures) take place in the second one.  相似文献   

6.
Although it has been widely accepted for several years that the normal state of high Tc superconductors is anomalous, only recently has there been growing evidence for the anomalous nature of the superconducting state. A number of recent experiments show clear evidence for the existence of low-lying excitations in the superconducting state. Moreover, the observation by Bonn, Hardy and coworkers of a linear temperature dependence in the microwave surface resistance and penetration depth of YBCO at low temperatures suggests d-wave pairing with line nodes. The evidence for and against unconventional superconductivity in the high Tc oxides is reviewed. Specific topics discussed include the different behaviours observed for the penetration depth in thin films and in single crystals, what is known about the absolute value of the penetration depth, the role of disorder and inelastic scattering, the relative merits of strongvs. weak correlation theories of d-wave superconductivity in the high Tc oxides, and most important, what have we actually learned about the penetration depth of high Tc superconductors fromμSR?  相似文献   

7.
We measure the penetration depth λab(T) in Ba(Fe(1-x)Co(x))(2)As(2) using local techniques that do not average over the sample. The superfluid density ρs(T) ≡ 1/λab(T)2 has three main features. First, ρs (T = 0) falls sharply on the underdoped side of the dome. Second, λab(T) is flat at low T at optimal doping, indicating fully gapped superconductivity, but varies more strongly in underdoped and overdoped samples, consistent with either a power law or a small second gap. Third, ρs (T) varies steeply near Tc for optimal and underdoping. These observations are consistent with an interplay between magnetic and superconducting phases.  相似文献   

8.
Magnetization, resistivity and electron spin resonance (ESR) measurements have been performed on single crystals of A10Cu17O29 (A=Ca5.9, Sr3.5, Bi0.3, Pb0.1, Y0.1, Al0.1) of the S=1/2 quasi-one-dimensional system, which has both simple chains and two-leg ladders of copper ions. Substantial hole doping has been achieved in the studied crystals, which led to superconductivity with a high critical temperature (Tc≈80 K). The values of the penetration depth have been estimated for temperatures in the range 30–60 K using the reversible magnetization data. A rough estimation of the Ginzburg–Landau parameter, κ, indicates that the superconductivity in the investigated ladder material should be described as an extreme type-II limit. It has been suggested that the superconductivity in the studied system should be related to the two-leg ladders rather than to the chains.  相似文献   

9.
陈丽  李华 《物理学报》2004,53(3):922-926
用MS-Xα方法研究了非氧化物超导材料MgCNi3的电子结构. 研究结果显示, 态密度分布曲线的主峰靠近Fermi面, 主要来自于Ni的d电子的贡献. 用T(T=Co,Mn,Cu)替代MgCNi3中的部分Ni形成化合物MgCNi2T,替代使Ni的价电子数减小, 价态发生变化, Fermi面处态密度N(EF)减小. 计算结果表明:无论是电子掺杂(Cu)还是空穴掺杂(Co,Mn),MgCNi3的超导电 关键词: 电子结构 态密度 超导电性  相似文献   

10.
The electronic doping effect on both the superconductivity and the nematic order in the FeSe nanoflake are investigated by using the electric-double-layer transistor configuration.The superconductivity can be effectively controlled by electronic doping,and the onset superconducting transition temperature T_c reaches as high as 45 K at a gate voltage of Vg = 4 V.Meanwhile,the nematic phase is gradually suppressed with the increase of electronic doping(or Vg).The results provide an effective method with variable charge doping for investigation of the rich physics in the FeSe superconductor.  相似文献   

11.
The behavior of a type II superconductor in the presence of a magnetic field is governed by two characteristic length scales, the London penetration depth and the coherence length. We present magnetization measurements on MgB2 powder showing an anisotropy in the upper critical field and hence the coherence length of 6. Using the technique of small angle neutron scattering we show that this anisotropy is not mirrored in the London penetration depth, which is almost isotropic. This result can be explained by the superconductivity residing in two distinct electronic bands of the material, only one of which is highly anisotropic.  相似文献   

12.
We present zero field and transverse field muon spin relaxation experiments on the recently discovered Fe-based superconductor LaFeAsO1-xFx (x=0.075 and x=0.1). The temperature dependence of the deduced superfluid density is consistent with a BCS s-wave or a dirty d-wave gap function, while the field dependence strongly evidences unconventional superconductivity. We obtain the in-plane penetration depth of lambda ab(0)=254(2) nm for x=0.1 and lambda ab(0)=364(8) nm for x=0.075. Further evidence for unconventional superconductivity is provided by the ratio of Tc versus the superfluid density, which is close to the Uemura line of high-Tc cuprates.  相似文献   

13.
L P Gor’kov 《Pramana》1987,28(5):597-597
Physical properties are discussed, which, in principle, would allow us to distinguish between nontrivial superconductivity and superconductivity of the ordinary type thus establishing its superconducting class. These properties are: the anisotropy of the upper and low critical fields, the magnetization curve, some peculiarities of the penetration depth, the impedance behaviour etc. It is pointed out that these superconductors could possess some magnetic properties. The role of defects is investigated and, in particular, the possibility of the magnetization in these superconductors which originates from the presence of ordinary defects. The problem of nontrivial superconductivity is discussed in connection with available experimental data concerning new materials with the so-called “heavy fermions”.  相似文献   

14.
超导薄膜磁场穿透深度的双线圈互感测量   总被引:1,自引:0,他引:1       下载免费PDF全文
磁场穿透深度是联系超导体宏观电动力学与微观机制的重要物理量,其精确测量对于研究超导机理以及探索超导应用具有重要意义.在众多的磁场穿透深度测量方法中,双线圈互感法具有测量精度高、技术相对成熟、对样品没有破坏等优点,可被用于细致地研究超导薄膜的磁场穿透深度对温度、掺杂、外延应力等参量的依赖关系.本文首先简要介绍了双线圈互感法的基本原理,指出该方法的测量精度主要受系统几何参数及薄膜边缘漏磁的影响;之后对自主设计搭建的透射型双线圈互感装置进行了系统的校验,并详细说明了其测量精度:对于厚度为100 nm,穿透深度为150 nm的典型薄膜样品,穿透深度绝对值的测量误差小于10%;最后通过测量NbN超导薄膜的磁场穿透深度进一步检验了装置的精度,分析表明穿透深度的测量值与文献报道结果符合.  相似文献   

15.
The variation of a magnetic field as a function of depth beneath the surface of an YBa(2)Cu(3)O(7-delta) thin film in the Meissner state has been measured using low energy muons. The depth of implantation was varied from 20-150 nm by tuning the energy of the implanted muons from 3-30 keV. These are direct measurements of the penetration of a magnetic field beneath a superconducting surface which illustrate the power of low energy muons for near surface studies in superconductivity and magnetism.  相似文献   

16.
掺杂MgCNi3超导电性和磁性的第一性原理研究   总被引:4,自引:0,他引:4       下载免费PDF全文
张加宏  马荣  刘甦  刘楣 《物理学报》2006,55(9):4816-4821
从第一性原理出发,计算了MgCNi3的电子能带结构.MgCNi3中C 2p与Ni 3d轨道杂化使穿梭费米面上的Ni 3d能带表现出平面性,费米面落在态密度范霍夫奇异(vHs)峰的右坡上.vHs峰上大的电子态密度和铁磁相变点附近的自旋涨落是决定MgCNi3超导电性的重要因素.研究了三种替代式掺杂对其超导电性和磁性的影响,发现电子掺杂使费米能级下滑到态密度较低的位置,导致体系转变为无超导电性的顺磁相;同构等价电子数的金属间化合物的轨道杂化,引起费米面上态密度的减少,降低了超导电性;而空穴掺杂使费米面向vHs峰值方向移动,虽然费米面上电子态密度增大可能提高超导电性,但增强了的Ni原子磁交换作用产生铁磁序,破坏了超导电性. 关键词: 电子结构 超导电性 磁性 掺杂  相似文献   

17.
Microwave penetration depth lambda and surface resistance at 27 GHz are measured in high quality crystals of KOs(2)O(6). Firm evidence for fully gapped superconductivity is provided from lambda(T). Below the second transition at T(p) approximately 8 K, the superfluid density shows a steplike change with a suppression of effective critical temperature T(c). Concurrently, the extracted quasiparticle scattering time shows a steep enhancement, indicating a strong coupling between the anomalous rattling motion of K ions and quasiparticles. The results imply that the rattling phonons help to enhance superconductivity, and that K sites freeze to an ordered state with long quasiparticle mean free path below T(p).  相似文献   

18.
徐海超  牛晓海  叶子荣  封东来 《物理学报》2018,67(20):207405-207405
铁基超导和铜基超导具有诸多相似性,这为建立统一的高温超导机理图像提供了可能性.然而,对铁基超导体系中无论是进行电荷掺杂、还是等价掺杂来改变化学压力,都能产生定性上类似、而细节上纷繁复杂的相图,这对建立统一的图像造成了困难.研究化学掺杂效应如何在微观上影响电子结构和超导电性,区分主导超导电性演化的主要因素和次要因素,对建立统一图像和揭示高温超导机理至关重要.本文综述了对铁基超导体系中化学掺杂效应的一系列角分辨光电子能谱研究,涵盖了基于FeAs和FeSe面的多种代表性铁基超导体系,包括异价掺杂、等价掺杂、在元胞不同位置的化学掺杂,及其对电子体系在费米面结构、杂质散射、电子关联强度等方面的影响.实验结果表明:电子关联性或能带宽度是多个铁基超导相图背后的普适参数,不同的晶格和杂质散射效应导致了并不重要的复杂细节,而费米面拓扑结构与超导电性的关联并不强.这些结果对弱耦合机理图像提出了挑战,并促使人们通过局域反铁磁交换作用配对图像在带宽演化层面上统一地理解铁基超导.  相似文献   

19.
We show that many observable properties of high-temperature superconductors can be obtained in the framework of a one-dimensional self-consistent model with included superconducting correlations. Analytical solutions for spin, charge, and superconductivity order parameters are found. The ground state of the model at low hole doping is a spin-charge solitonic superstructure. Increased doping leads to a transition to the superconducting phase. There is a region of doping where superconductivity, spin density wave, and charged stripe structure coexist. The charge density modulation appears in the vicinity of vortices (kinks in the 1D model) in the superconducting state.  相似文献   

20.
Understanding the normal state transport properties in hole-doped high-temperature cuprate superconductors (HTCSs) is a challenging task which has been widely believed to be one of the key steps toward revealing the pairing mechanism of high-temperature superconductivity. Here, we present a true intrinsic and universal doping dependence of in-plane dc conductivity for all underdoped HTCSs. The doping dependence of in-plane dc conductivity normalized to that at optimal doping can be represented by a simple exponential formula. The doping behavior of the square of the nodal Fermi velocity derived by the high-resolution laser-based angle-resolved photoemission spectroscopy in the superconducting state follows reasonably well the universal intrinsic doping behavior. Our findings suggest a commonality of the low-energy quasiparticles both in the normal and superconducting states that place a true universal and stringent constraint on the mechanism of high-temperature superconductivity for HTCSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号