首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
The magnetic-field-induced 3D ordered phase of the two-leg spin ladder Cu2(C5H12N2)2Cl4 has been probed through measurements of 1H NMR spectra and 1/T1 in the temperature range 70 mK-1.2 K. The second order transition line T(c)(H) has been determined between H(c1) = 7.52 T and H(c2) = 13.5 T and varies as (H-H(c1))(2/3) close to H(c1). From the observation of anomalous shifts and a crossover in 1/T1 above T(c), the mechanism of the 3D transition is argued to be magnetoelastic as in spin-Peierls chains, here involving a displacement of the protons along the longitudinal exchange ( J( parallel)) path.  相似文献   

3.
The thermal conductivity of the spin-1/2 ladder system Sr14-xCaxCu24O41 ( x = 0, 2, and 12) has been measured both along ( kappa(c)) and perpendicular to ( kappa(a)) the ladder direction at temperatures between 5 and 300 K. While the temperature dependence of kappa(a) is typical for phonon heat transport, an unusual double-peak structure is observed for kappa(c)(T). We interpret this unexpected feature as a manifestation of quasi-one-dimensional magnon thermal transport mediated by spin excitations along the ladders.  相似文献   

4.
The magnetization, M(H< or =30 T,0.7< or =T< or =300 K), of (C5H12N)2CuBr4 has been used to identify this system as an S = 1/2 Heisenberg two-leg ladder in the strong-coupling limit, J( perpendicular) = 13.3 K and J( parallel) = 3.8 K, with H(c1) = 6.6 T and H(c2) = 14.6 T. An inflection point in M(H,T = 0.7 K) at half saturation, M(s)/2, is described by an effective XXZ chain. The data exhibit universal scaling behavior in the vicinity of H(c1) and H(c2), indicating that the system is near a quantum critical point.  相似文献   

5.
We identify the formation of bound 129Xe-Xe molecules as the primary fundamental spin-relaxation process at densities below 14 amagat. Low pressure Xe relaxation rate measurements as a function of gas composition show that Xe-Xe molecular relaxation contributes 1/T1 = 1/4.1 h to the total observed relaxation rate. The measured rate is consistent with theoretical estimates deduced from previously measured NMR chemical shifts. At atmospheric pressure the molecular relaxation is more than an order of magnitude stronger than binary relaxation. Confusion of molecular and wall relaxation mechanisms has historically caused wall relaxation rates to be overestimated.  相似文献   

6.
Muon spin rotation/relaxation measurements have been performed in the itinerant helical magnet MnSi at ambient pressure and at 8.3 kbar. We have found the following: (a) the spin-lattice relaxation rate 1/T(1) shows divergence as T1T proportional, variant (T-T(c))(beta) with the power beta larger than 1 near T(c); (b) 1/T(1) is strongly reduced in an applied external field B(L) and the divergent behavior near T(c) is completely suppressed at B(L)> or =4000 G. We discuss that (a) is consistent with the self-consistent renormalization theory and reflects a departure from "mean-field" behavior, while (b) indicates selective suppression of spin fluctuations of the q=0 component by B(L).  相似文献   

7.
We report a systematic study by (75)As nuclear-quadrupole resonance in LaFeAsO(1-x)F(x). The antiferromagnetic spin fluctuation found above the magnetic ordering temperature T(N) = 58 K for x = 0.03 persists in the regime 0.04 ≤ x ≤ 0.08, where superconductivity sets in. A dome-shaped x dependence of the superconducting transition temperature T(c) is found, with the highest T(c) = 27 K at x = 0.06, which is realized under significant antiferromagnetic spin fluctuation. With increasing x further, the antiferromagnetic spin fluctuation decreases, and so does T(c). These features resemble closely the cuprates La(2-x)Sr(x)CuO(4). In x = 0.06, the spin-lattice relaxation rate (1/T(1)) below T(c) decreases exponentially down to 0.13T(c), which unambiguously indicates that the energy gaps are fully opened. The temperature variation of 1/T(1) below T(c) is rendered nonexponential for other x by impurity scattering.  相似文献   

8.
In order to gain a better understanding of the origin of decoherence in superconducting flux qubits, we have measured the magnetic field dependence of the characteristic energy relaxation time (T(1)) and echo phase relaxation time (T(2)(echo)) near the optimal operating point of a flux qubit. We have measured T(2)(echo) by means of the phase cycling method. At the optimal point, we found the relation T(2)(echo) approximately 2T(1). This means that the echo decay time is limited by the energy relaxation (T(1) process). Moving away from the optimal point, we observe a linear increase of the phase relaxation rate (1/T(2)(echo)) with the applied external magnetic flux. This behavior can be well explained by the influence of magnetic flux noise with a 1/f spectrum on the qubit.  相似文献   

9.
We report on the spin dynamics of 13C isotope enriched inner walls in double-wall carbon nanotubes using 13C nuclear magnetic resonance. Contrary to expectations, we find that our data set implies that the spin-lattice relaxation time (T1) has the same temperature (T) and magnetic field (H) dependence for most of the inner-wall nanotubes detected by NMR. In the high-temperature regime (T approximately > or = 150 K), we find that the T and H dependence of 1/T1T is consistent with a 1D metallic chain. For T approximately < or = 150 K we find a significant increase in 1/T1T with decreasing T, followed by a sharp drop below approximately = 20 K. The data clearly indicate the formation of a gap in the spin excitation spectrum, where the gap value 2delta approximately = 40 K (congruent to 3.7 meV) is H independent.  相似文献   

10.
Effect of four-spin cyclic exchange on magnetism is studied in the two-leg S=1/2 ladder. We develop an exact spin-chirality duality transformation, under which the system is self-dual when the four-spin exchange J4 is half of the two-spin exchange. Using the density-matrix renormalization-group method and the duality relation, we find that the four-spin exchange makes the vector-chirality correlation dominant. A "chirality short-range resonating-valence-bond" phase is identified for the first time at large J4.  相似文献   

11.
We study the mechanism of nuclear spin relaxation in quantum dots due to the electron exchange with the 2D gas. We show that the nuclear spin relaxation rate 1/T(1) is dramatically affected by the Coulomb blockade (CB) and can be controlled by gate voltage. In the case of strong spin-orbit (SO) coupling the relaxation rate is maximal in the CB valleys, whereas for the weak SO coupling the maximum of 1/T(1) is near the CB peaks.  相似文献   

12.
We demonstrate electrical control of the spin relaxation time T1 between Zeeman-split spin states of a single electron in a lateral quantum dot. We find that relaxation is mediated by the spin-orbit interaction, and by manipulating the orbital states of the dot using gate voltages we vary the relaxation rate W identical withT1(-1) by over an order of magnitude. The dependence of W on orbital confinement agrees with theoretical predictions, and from these data we extract the spin-orbit length. We also measure the dependence of W on the magnetic field and demonstrate that spin-orbit mediated coupling to phonons is the dominant relaxation mechanism down to 1 T, where T1 exceeds 1 s.  相似文献   

13.
We report measurements of the 115In nuclear spin-lattice relaxation rate ( 1/T1) between T = 0.09 and 100 K in the new heavy fermion (HF) compound CeIrIn5. At 0.4 < or = T< or = 100 K, 1/T1 is strongly T-dependent, which indicates that CeIrIn5 is much more itinerant than known Ce-based HFs. We find that 1/T1T, subtracting that for LaIrIn5, follows a (1 / T+straight theta)3/4 variation with straight theta = 8 K. We argue that this novel feature points to anisotropic, due to a layered crystal structure, spin fluctuations near a magnetic ordering. The bulk superconductivity sets in at 0.40 K below which the coherence peak is absent and 1/T1 follows a T3 variation, which suggests unconventional superconductivity with line-node gap.  相似文献   

14.
We report extensive new measurements of the longitudinal relaxation time T1 of 129Xe nuclear spins in solid xenon. For temperatures T<120 K and magnetic fields B>0.05 T, we found T1 on the order of hours, in good agreement with previous measurements and with the predicted phonon-scattering limit for the spin-rotation interaction. For T>120 K, our new data show that T1 can be much shorter than the phonon scattering limit. For B = 0.06 T, a field often used to accumulate hyperpolarized xenon, T1 is approximately 6 s near the Xe melting point T(m) = 161.4 K. From T = 50 K to T(m), the new data are in excellent agreement with the theoretical prediction that the relaxation is due to (i) modulation of the spin-rotation interaction by phonons, and (ii) modulation of the dipole-dipole interaction by vacancy diffusion.  相似文献   

15.
We consider a spin-1/2 ladder with a ferromagnetic rung coupling J perpendicular and inequivalent chains. This model is obtained by a twist (theta) deformation of the ladder and interpolates between the isotropic ladder (theta=0) and the SU(2) ferromagnetic Kondo necklace model (theta = pi). We show that the ground state in the (theta, J perpendicular) plane has a finite string order parameter characterizing the Haldane phase. Twisting the chain introduces a new energy scale, which we interpret in terms of a Suhl-Nakamura interaction. As a consequence we observe a crossover in the scaling of the spin gap at weak coupling from delta/J parallel proportional, variant J perpendicular/J parallel for theta < theta c approximately 8 pi/9 to delta/J parallel proportional, variant (J perpendicular/J parallel)2 for theta > theta c. Those results are obtained on the basis of large scale quantum Monte Carlo calculations.  相似文献   

16.
Relaxation calculations for rapidly spinning samples show that spin-lattice relaxation time (T(1Z)) anisotropy varies with the angle between the rotor spinning axis and the external field. When the rate of molecular motion is in the extreme narrowing limit, the measurement of T(1Z) anisotropies for two different values of the spinning angle allows the determination of two linear combinations of the three static spectral densities, J(0)(0), J(1)(0), and J(2)(0). These functions are sensitive to molecular geometry and the rate and trajectory of motion. The utility of these linear combinations in the investigation of molecular dynamics in solids has been demonstrated with natural abundance (13)C NMR experiments on ferrocene. In an isolated (13)C-(1,2)H group, the dipole-dipole interaction has the same orientational dependence as the quadrupole interaction. Thus, the spectral densities that are responsible for dipolar relaxation of (13)C are the same as those responsible for deuteron quadrupolar relaxation. For ferrocene-d(10), deuteron T(1Z) and T(1Q) anisotropies and the relaxation time of the (13)C magic angle spinning peak provide sufficient information to determine the orientation dependence of all three individual spectral densities.  相似文献   

17.
Low-temperature (4-55 K) pulsed EPR measurements were performed with the magnetic field directed along the z-axis of the g-factor of the low-symmetry octahedral complex [(63)Cu(L-aspartate)(2)(H2O)2] undergoing dynamic Jahn-Teller effect in diaqua(L-aspartate)Zn(II) hydrate single crystals. Spin-lattice relaxation time T(1) and phase memory time T(M) were determined by the electron spin echo (ESE) method. The relaxation rate 1/T(1) increases strongly over 5 decades in the temperature range 4-55 K. Various processes and mechanisms of T(1)-relaxation are discussed, and it is shown that the relaxation is governed mainly by Raman relaxation processes with the Debye temperature Theta(D)=204 K, with a detectable contribution from disorder in the doped Cu(2+) ions system below 12 K. An analytical approximation of the transport integral I(8) is given in temperature range T=0.025-10Theta(D) and applied for computer fitting procedures. Since the Jahn-Teller distorted configurations differ strongly in energy (delta(12)=240 cm(-1)), there is no influence of the classical vibronic dynamics mechanism on T(1). Dephasing of the ESE (phase relaxation) is governed by instantaneous diffusion and spectral diffusion below 20 K with resulting rigid lattice value 1/T(0)(M)=1.88 MHz. Above this temperature the relaxation rate 1/T(M) increases upon heating due to two mechanisms. The first is the phonon-controlled excitation to the first excited vibronic level of energy Delta=243 cm(-1), with subsequent tunneling to the neighbor potential well. This vibronic-type dynamics also produces a temperature-dependent broadening of lines in the ESEEM spectra. The second mechanism is produced by the spin-lattice relaxation. The increase in T(M) is described in terms of the spin packets forming inhomogeneously broadened EPR lines.  相似文献   

18.
Superconductor-ferromagnet (S/F) spin valve effect theories based on the S/F proximity phenomenon assume that the superconducting transition temperature Tc of F1/F2/S or F1/S/F2 trilayers for parallel magnetizations of the F1 and F2 layers (T(c)(P)) are smaller than for the antiparallel orientations (T(c)(AP)). Here, we report for CoOx/Fe1/Cu/Fe2/In multilayers with varying Fe2-layer thickness the sign-changing oscillating behavior of the spin valve effect ΔT(c) = T(c)(AP) - T(c)(P). We observe the full direct effect with T(c)(AP) > T(c)(P) for Fe2-layer thickness d(Fe2) < 1 nm and the full inverse (T(c)(AP) < T(c((P)) effect for d(Fe2) ≥ 1 nm. Interference of Cooper pair wave functions reflected from both surfaces of the Fe2 layer appear as the most probable reason for the observed behavior of ΔT(c).  相似文献   

19.
We investigate low-frequency electron spin dynamics in a quantum Hall system with wire confinement by nuclear spin relaxation measurements. We developed a technique to measure the local nuclear spin relaxation rate T(1)(-1). T(1)(-1) is enhanced on both sides of the local filling factor ν(wire)=1, reflecting low-frequency fluctuations of electron spins associated with Skyrmions inside the wire. As the wire width is decreased, the fast nuclear spin relaxation is suppressed in a certain range of Skyrmion density. This suggests that the multi-Skyrmion state is modified and the low-frequency spin fluctuations are suppressed by the wire confinement.  相似文献   

20.
We report a 29Si NMR study on aligned single crystals of YbRh2Si2 which shows behavior characteristic of a quantum critical point (QCP: T(N)-->0). The Knight shift K and the nuclear spin-lattice relaxation rate 1/T(1) of Si show a strong dependence on the external field H, especially below 5 kOe. At the lowest H used in this measurement (H approximately 1.5 kOe), it was found that 1/T(1)T continues to increase down to 50 mK, whereas K stays constant with a large magnitude below 200 mK. This result strongly suggests the development of antiferromagnetic fluctuations with finite q vectors that compete with q=0 spin fluctuations in the vicinity of the QCP near H=0.5 kOe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号