首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neutrino parameters determined from the solar neutrino data and the anti-neutrino parameters determined from KamLAND reactor experiment are in good agreement with each other. However, the best fit points of the two sets differ from each other by about 10−5 eV2 in mass-square difference and by about 2° in the mixing angle. Future solar neutrino and reactor anti-neutrino experiments are likely to reduce the uncertainties in these measurements. This, in turn, can lead to a signal for CPT violation in terms a non-zero difference between neutrino and anti-neutrino parameters. In this paper, we propose a CPT violating mass matrix which can give rise to the above differences in both mass-squared difference and mixing angle and study the constraints imposed by the data on the parameters of the mass matrix.  相似文献   

2.
We consider the Majorana CP violating phases derived from right-handed Majorana mass matrices to estimate the baryon asymmetry of the universe, for different neutrino mass models, namely degenerate, inverted hierarchical and normal hierarchical models, with tri-bimaximal mixings. Considering three possible diagonal forms of Dirac neutrino mass matrix as charged-lepton, up-quark or down-quark mass matrix within the framework of left-right symmetric GUT models, the right-handed Majorana mass matrices are constructed from the light Majorana neutrino mass matrix through the inverse seesaw formula. These light neutrino mass matrices have already been tested to provide good predictions on neutrino mass parameters and mixing angles. They are again applied to predict baryon asymmetry of the universe in the present work. The normal hierarchical model gives the best prediction for baryon asymmetry, consistent with observation. The analysis may serve as additional information in the discrimination of the presently available neutrino mass models.  相似文献   

3.
Recent neutrino experiments suggest strong evidence of tiny neutrino masses and the lepton-flavor mixing. Neutrino-oscillation solutions for the atmospheric neutrino anomaly and the solar neutrino deficit can determine the texture of the neutrino mass matrix according to the neutrino mass hierarchies as Type A: , Type B: , and Type C: , where is the i-th generation neutrino mass. In this paper we study the stability of the lepton-flavor mixing matrix against quantum corrections for all three types of mass hierarchy in the minimal supersymmetric Standard Model with an effective dimension-five operator which gives the Majorana masses of neutrinos. The relative sign assignments of neutrino masses in each type play crucial role for the stability against quantum corrections. We find that the lepton-flavor mixing matrix of Type A is stable against quantum corrections, and that of Type B with the same (opposite) signs of and are unstable (stable). For Type C, the lepton-flavor-mixing matrix approaches the definite unitary matrix according to the relative sign assignments of the neutrino mass eigenvalues as the effects of quantum corrections become large enough to neglect the squared mass differences of neutrinos. Received: 24 June 1999 / Revised version: 23 December 1999 / Published online: 17 March 2000  相似文献   

4.
We show that, in the framework of three light neutrino species with hierarchical masses and assuming no fine tuning between the entries of the neutrino mass matrix, one can use the solar neutrino data to obtain information on the element U(e3) of the lepton mixing matrix. Conversely, a measurement of U(e3) in atmospheric or long baseline accelerator or reactor neutrino experiments would help discriminate between possible oscillation solutions of the solar neutrino problem.  相似文献   

5.
It has been observed that simultaneous explanation of the solar and atmospheric neutrino deficits and the reported evidence for oscillation from the Los Alamos Liquid Scintillator Detector (LSND) requires at least one extra neutrino species in addition to the three known ones. The extra neutrino must be sterile with respect to the known weak interactions. We present a new mass matrix for these four neutrinos in which the LSND effect and the atmospheric neutrino deficit are governed by only one parameter. We investigate the phenomenological implications of such a mass matrix ansatz and suggest possible ways to understand it in gauge theories.  相似文献   

6.
Phenomenological relations for masses, angles, and CP phases in the neutrino mixing matrix are proposed with allowance for available experimental data. For the case of CP violation in the lepton sector, an analysis of the possible structure of the neutrino mass matrix and a calculation of the neutrino mass features and the Dirac CP phase for the bimodal-neutrino model are performed. The values obtained in this way can be used to interpret and predict the results of various neutrino experiments.  相似文献   

7.
We study constraints on neutrino properties for a class of bi-large mixing See-Saw mass matrices with texture zeros and with the related Dirac neutrino mass matrix to be proportional to a diagonal matrix of the form diag(ε,1,1). Texture zeros may occur in the light (class a) or in the heavy (class b) neutrino mass matrices. Each of these two classes has 5 different forms which can produce non-trivial three generation mixing with at least one texture zero. We find that two types of texture zero mass matrices in both class a and class b can be consistent with present data on neutrino masses and mixing. None of the neutrinos can have zero masses and the lightest of the light neutrinos has a mass larger than about 0.046 eV for class a and 0.0027 eV for class b. In these models although the CKM CP violating phase vanishes, the non-zero Majorana phases can exist and can play an important role in producing the observed baryon asymmetry in our universe through leptogenesis mechanism. The requirement of producing the observed baryon asymmetry can further distinguish different models and also restrict the See-Saw scale to be in the range of 1012~1015 GeV. We also discuss RG effects on V13.  相似文献   

8.
Constraints on the heavy sterile neutrino mixing angles are studied in the framework of a minimal supersymmetric SO(10) model with the use of the double see-saw mechanism. A new singlet matter in addition to the right-handed neutrinos is introduced to realize the double see-saw mechanism. The light Majorana neutrino mass matrix is, in general, given by a combination of those of the singlet neutrinos and the active neutrinos. The minimal SO(10) model is used to give an example form of the Dirac neutrino mass matrix, which enables us to predict the masses and the mixing angles in the enlarged 9×9 neutrino mass matrix. Mixing angles between the light Majorana neutrinos and the heavy sterile neutrinos are shown to be within the LEP experimental bound on all ranges of the Majorana phases.  相似文献   

9.
Neutrinos stand out among the elementary particles because of their unusually small masses.Various seesaw mechanisms attempt to explain this fact.In this work,applying insights from matrix theory,we are in a position to treat variants of seesaw mechanisms in a general manner.Specifically,using Weyl's inequalities,we discuss and rigorously prove under which conditions the seesaw framework leads to a mass spectrum with exactly three light neutrinos.We find an estimate of the mass of heavy neutrinos to be the mass obtained by neglecting light neutrinos,shifted at most by the maximal strength of the coupling to the light neutrino sector.We provide analytical conditions allowing one to prescribe that precisely two out of five neutrinos are heavy.For higher-dimensional cases the inverse eigenvalue methods are used.In particular,for the CP-invariant scenarios we show that if the neutrino sector has a valid mass matrix after neglecting the light ones,i.e.if the respective mass submatrix is positive definite,then large masses are provided by matrices with large elements accumulated on the diagonal.Finally,the Davis-Kahan theorem is used to show how masses affect the rotation of light neutrino eigenvectors from the standard Euclidean basis.This general observation concerning neutrino mixing,together with results on the mass spectrum properties,opens directions for further neutrino physics studies using matrix analysis.  相似文献   

10.
11.
The observation of neutrino oscillations requires new physics beyond the standard model (SM).A SM-like gauge theory with p lepton families can be extended by introducing q heavy right-handed Majorana neutrinos but preserving its SU(2)L x U(1)y gauge symmetry.The overall neutrino mass matrix M turns out to be a symmetric (p+q) x (p+q) matrix.Given p>q,the rank of M is in general equal to 2q,corresponding to 2q non-zero mass eigenvalues.The existence of (p-q) massless left-handed Majorana neutrinos is an exact consequence of the model,independent of the usual approximation made in deriving the Type-I seesaw relation between the effective p x p light Majorana neutrino mass matrix M,and the q x q heavy Majorana neutrino mass matrix MR.In other words,the numbers of massive left- and right-handed neutrinos are fairly matched.A good example to illustrate this "seesaw fair play rule"is the minimal seesaw model with p = 3 and q = 2,in which one masslese neutrino sits on the unbalanced seesaw.  相似文献   

12.
晁伟 《中国物理 C》2011,35(3):214-222
In the supersymmetric left-right model, the light neutrino masses are given by the Type-Ⅱ seesaw mechanism. A duality property of this mechanism indicates that there exist eight possible Higgs triplet Yukawa couplings which result in the same neutrino mass matrix. In this paper, we work out the one-loop renormalization group equations for the effective neutrino mass matrix in the supersymmetric left-right model. The stability of the Type-Ⅱ seesaw scenario is briefly discussed. We also study the lepton-flavor-violating processes (τ→ μγ and τ→eγ) by using the reconstructed Higgs triplet Yukawa couplings.  相似文献   

13.
A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal activeneutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilities for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a2 type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.  相似文献   

14.
We present the generic formulas to calculate the ratios of neutrino masses and the Majorana phases of CP violation from the neutrino mass matrix with two independent vanishing entries in the flavor basis where the charged lepton mass matrix is diagonal. An order-of-magnitude illustration is given for seven experimentally acceptable textures of the neutrino mass matrix, and some analytical approximations are made for their phenomenological consequences at low energy scales.  相似文献   

15.
A generalized model involving three active neutrinos and three sterile neutrinos of different mass, one being relatively heavy [(3 + 1 + 2) model], is considered on the basis of experimental data, which admit the existence of anomalies beyond the minimally extended standard model featuring three active neutrinos of different mass. Basic properties used to describe massive active and sterile neutrinos are studied along with methods for determining the absolute scale of neutrino masses and for estimating neutrino masses on the basis of available experimental data. In the approximation of CP conservation, admissible values of the elements of the neutrino mass matrix are found from numerical calculations versus the possible values of the mass of one of the sterile neutrinos. The dependences of the mass properties of the neutrinos on the sterile-neutrino mass are constructed with allowance for possible sterile-neutrino contributions. The respective results can be used to interpret and predict results of various neutrino experiments.  相似文献   

16.
We study the symmetric texture of geometric form with 2-zeros to see if it is consistent with the presently-known neutrino masses and mixings. In the neutrino mass matrix elements we obtain numerically the allowed region of the parameters including CP-violating phases, which can reproduce the present neutrino experiment data. The result of this analysis dictates the narrow region for the GUT model including Pati–Salam symmetry with texture zeros to be consistent with the experimental data. The |Ue3| and JCP are also predicted in such models.  相似文献   

17.
Neutrino-oscillation solutions for the atmospheric neutrino anomaly and the solar neutrino deficit can determine the texture of the neutrino mass matrix according to three types of neutrino mass hierarchy: Type A: , Type B: , and Type C: , where is the absolute mass of the ith generation neutrino. The relative sign assignments of the neutrino masses in each type of mass hierarchy play crucial roles in the stability against quantum corrections. Actually, two physical Majorana phases in the lepton flavor mixing matrix connect the relative sign assignments of the neutrino masses. Therefore, in this paper we analyze the stability of the mixing angles against quantum corrections according to three types of neutrino mass hierarchy (Type A, B, C) and two Majorana phases. The two phases play crucial roles in the stability of the mixing angles against quantum corrections. Received: 9 May 2000 / Revised version: 23 May 2000 / Published online: 8 September 2000  相似文献   

18.
19.
The equations connecting elements of the Yukawa matrix to elements of the active neutrino mass matrix in the νMSM theory (an extension of the Standard Model by a singlet of three right-handed neutrinos) was analyzed, and explicit relations for the ratio of the Yukawa matrix elements and elements of the active neutrino mass matrix were obtained. This relation can be used for getting more accurate constraints on the model parameters. Particularly, with the help of the obtained results we investigated CP-violating phase in the νMSM theory. We demonstrate that even in the case when elements of the active neutrino mass matrix are real the baryon asymmetry can be generated also.  相似文献   

20.
Neutrino mixing lead to a non zero contribution to the dark energy of the universe. We assume that the neutrino masses and mixing arise through physics at a scale intermediate between Planck Scale and the electroweak scale. The mechanism of neutrino mixing is a possible candidate to contribute the cosmological dark energy. Quantum gravitational (Planck scale) effects lead to an effective SU(2) L ×U(1) invariant dimension-5 Lagrangian involving neutrino and Higgs fields, which gives rise to additional terms in neutrino mass matrix. There additional term can be considered to be perturbation of the GUT scale bi-maximal neutrino mass matrix. We assume that the gravitational interaction is flavor. In this paper, we discuss the three flavor neutrino mixing and cosmological dark energy contributes due to Planck scale effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号