首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We use the numerical renormalization group method to calculate the single-particle matrix elements T of the many-body T matrix of the conduction electrons scattered by a magnetic impurity at T=0 temperature. Since T determines both the total and the elastic, spin-diagonal scattering cross sections, we are able to compute the full energy, spin, and magnetic field dependence of the inelastic scattering cross section sigma(inel)(omega). We find an almost linear frequency dependence of sigma(inel)(omega) below the Kondo temperature T(K), which crosses over to a omega(2) behavior only at extremely low energies. Our method can be generalized to other quantum impurity models.  相似文献   

2.
We report on the c-axis resistivity rho(c)(H) in Bi(2)Sr(2)CaCu(2)O(8+delta) that peaks in quasistatic magnetic fields up to 60 T. By suppressing the Josephson part of the two-channel (Cooper pair/quasiparticle) conductivity sigma(c)(H), we find that the negative slope of rho(c)(H) above the peak is due to quasiparticle tunneling conductivity sigma(q)(H) across the CuO2 layers below H(c2). At high fields (a) sigma(q)(H) grows linearly with H, and (b) rho(c)(T) tends to saturate ( sigma(c) not equal0) as T-->0, consistent with the scattering at the nodes of the d-wave gap. A superlinear sigma(q)(H) marks the normal state above T(c).  相似文献   

3.
We numerically calculate the conductivity sigma of an undoped graphene sheet (size L) in the limit of a vanishingly small lattice constant. We demonstrate one-parameter scaling for random impurity scattering and determine the scaling function beta(sigma)=dlnsigma/dlnL. Contrary to a recent prediction, the scaling flow has no fixed point (beta>0) for conductivities up to and beyond the symplectic metal-insulator transition. Instead, the data support an alternative scaling flow for which the conductivity at the Dirac point increases logarithmically with sample size in the absence of intervalley scattering--without reaching a scale-invariant limit.  相似文献   

4.
We present the temperature dependence of the thermal conductivity kappa(T) of the unconventional superconductor Sr2RuO4 down to low temperatures ( approximately 100 mK). In the T-->0 K limit we found a finite residual term in kappa/T, providing clear evidence for the superconducting state with an unconventional pairing. The residual term remains unchanged for samples with different T(c), demonstrating the universal character of heat transport in this spin-triplet superconductor. The low-temperature behavior of kappa suggests the strong impurity scattering with a phase shift close to pi/2. A criterion for the observation of universality is experimentally deduced.  相似文献   

5.
Classical ionized impurity scattering is employed to calculate the conductivity at and in the vicinity of the critical point. The result sigma(iis)(x = x(c),T) = Asqrt[T], closely given by e(2)/Planck's over 2pilambda(dB) with the de Broglie wavelength lambda(dB) = h/(2m(*)kT)(1/2) in the nondegenerate regime epsilon(F)x(c), T) might also explain the linear scaling behavior sigma(x, T)-Asqrt[T] = sigma(0)(x/x(0)-1).  相似文献   

6.
We have introduced defects into clean samples of the organic superconductor kappa-(BEDT-TTF)(2)Cu(SCN)(2) in order to determine their effect on the temperature dependence of the interlayer conductivity and the critical temperature T(c). We find a violation of Matthiessen's rule that can be explained by a model of involving a defect-assisted interlayer channel which acts in parallel with the bandlike conductivity. We observe an unusual dependence of T(c) on residual resistivity, inconsistent with the generalized Abrikosov-Gor'kov theory for an order parameter with a single component, providing an important constraint on models of the superconductivity in this material.  相似文献   

7.
8.
Raman scattering spectra from the ac face of thick MgB2 single crystals were measured in zz, xz, and xx polarizations. In zz and xz polarizations a threshold at around 29 cm(-1) forms in the below T(c) continuum but no pair-breaking peak is seen, in contrast to the sharp pair-breaking peak at around 100 cm(-1) in xx polarization. The zz and xz spectra are consistent with Raman scattering from a dirty superconductor while the sharp peak in the xx spectra argues for a clean system. Analysis of the spectra resolves this contradiction, placing the larger and smaller gap magnitudes in the sigma and pi bands and indicating that relatively strong impurity scattering is restricted to the pi bands.  相似文献   

9.
There has long been a discrepancy between microwave conductivity measurements in high temperature superconductors and the conductivity spectrum expected in the simplest models for impurity scattering in a d-wave superconductor. Here we present a new type of broadband measurement of microwave surface resistance that finally shows some of the spectral features expected for a d(x2-y2) pairing state. Cusp-shaped conductivity spectra, consistent with weak impurity scattering of nodal quasiparticles, were obtained in the 0.6-21 GHz frequency range in highly ordered crystals of YBa2Cu3O6.50 and YBa2Cu3O6.99.  相似文献   

10.
双能隙超导体MgB2的热导   总被引:2,自引:0,他引:2       下载免费PDF全文
测量了多晶MgB2的热导,实验温区为5—300K.在双能隙模型下,用基于BCS超导理论的BRT热导理论对实验结果进行了分析,给出MgB2中两个能隙大小分别为16和51meV.对电子热导的分析结果表明σ能带准粒子受到的杂质散射远小于π能带准粒子受到的杂质散射.与单晶MgB2的热导实验结果相比,多晶MgB2的声子热导结果表明在c方向上热传导声子受到来自σ能带准粒子的散射,显示了MgB2在能量输运上的各向异性. 关键词: MgB2 热导率 能隙  相似文献   

11.
The low-temperature electronic thermal conductivity of the d-wave superconductors with nonmagnetic impurities is calculated within the framework of coherent potential approx-imation. The result shows that at low concentration, the low-temperature linear term of the thermal conductivity κ in the superconducting state is almost independent on the scattering rate or the concentration of the impurities. However, as the concentration increases, the universal value κ/T increases monotonously with the impurity concentration. A possible form of order parameter that may reduce the discrepancy between the theoretical value of κ/T and the measured value is also suggested.  相似文献   

12.
We have measured the complex conductivity sigma of a Bi(2)Sr(2)CaCu(2)O(8+delta) thin film between 0.2 and 0.8 THz. We find sigma in the superconducting state to be well described as the sum of contributions from quasiparticles, condensate, and order parameter fluctuations which draw 30% of the spectral weight from the condensate. An analysis based on this decomposition yields a quasiparticle scattering rate on the order of k(B)T/Planck's over 2pi for temperatures below T(c).  相似文献   

13.
The temperature and electrical field dependent conductivity of n-type CdSe nanocrystal thin films is investigated. In the low electrical field regime, the conductivity follows sigma approximately exp([-(T(*)/T)(1/2)] in the temperature range 10相似文献   

14.
We present mean-field calculations for the in-plane optical conductivity, the superfluid density, and the electronic Raman susceptibility in quasi two-dimensional systems possessing a ground state with two competing order parameters: d-wave density wave (dDW) and d-wave superconductor (dSC). In the coexisting dDW+dSC phase we calculate the frequency dependence of these correlation functions in the presence of impurity scattering in the unitary limit, relevant to zinc-doped cuprate superconductors.  相似文献   

15.
For a broad range of electron densities n and temperatures T, the in-plane magnetoconductivity of the two-dimensional system of electrons in silicon MOSFETs can be scaled onto a universal curve with a single parameter H(sigma)(n,T), where H(sigma) obeys the empirical relation H(sigma) = A(n) [Delta(n)(2)+T2](1/2). The characteristic energy k(B)Delta associated with the magnetic field dependence of the conductivity decreases with decreasing density, and extrapolates to 0 at a critical density n(0), signaling the approach to a zero-temperature quantum phase transition. We show that H(sigma) = AT for densities near n(0).  相似文献   

16.
Using perturbed Bogoliubov equations, we study the linear response to a weak orbital magnetic field of the heat conductivity of the normal-superfluid interface of a polarized Fermi gas at sufficiently low temperature. We consider the various scattering regions of the BCS regime and analytically obtain the transmission coefficients and the heat conductivity across the interface in an arbitrary weak orbital field. For a definite choice of the field, we consider various values of the scattering length in the BCS range and numerically obtain the allowed values of the average and species-imbalance chemical potentials. Thus, taking Andreev reflection into account, we describe how the heat conductivity is affected by the field and the species imbalance. In particular, we show that the additional heat conductivity due to the orbital field increases with the species imbalance, which is more noticeable at higher temperatures. Our results indicate how the heat conductivity may be controlled, which is relevant to sensitive magnetic field sensors/regulators at the interface.  相似文献   

17.
We report a detailed analytic and numerical study of electronic thermal conductivity in d-wave superconductors. We compare theory of the crossover at low temperatures from T dependence to T(3) dependence for increasing temperature with recent experiments on YBa(2)Cu(3)O(7) in zero magnetic field for T approximately [0.04 K,0.4 K] by Hill et al. [Phys. Rev. Lett. 92, 027001 (2004)]. Transport theory, including impurity scattering and inelastic scattering within strong-coupling superconductivity, can consistently fit the temperature dependence of the data in the lower half of the temperature regime. We discuss the conditions under which we expect power-law dependences over wide temperature intervals.  相似文献   

18.
We show that Shubnikov-de Haas oscillations in the interlayer resistivity of the organic superconductor beta(")-(BEDT-TTF)2SF5CH2CF2SO3 become very pronounced in magnetic fields approximately 60 T. The conductivity minima exhibit thermally activated behavior that can be explained simply by the presence of a Landau gap, with the quasi-one-dimensional Fermi surface sheets contributing negligibly to the conductivity. This observation, together with complete suppression of chemical potential oscillations, is consistent with an incommensurate nesting instability of the quasi-one-dimensional sheets.  相似文献   

19.
We consider the conductivity sigma of graphene with negligible intervalley scattering at half filling. We derive the effective field theory, which, for the case of a potential disorder, is a symplectic-class sigma model including a topological term with theta=pi. As a consequence, the system is at a quantum critical point with a universal value of the conductivity of the order of e(2)/h. When the effective time-reversal symmetry is broken, the symmetry class becomes unitary, and sigma acquires the value characteristic for the quantum Hall transition.  相似文献   

20.
N. E. Hussey 《物理学进展》2013,62(8):1685-1771
The aim of this review is to summarize existing experimental investigations on the nature of the low-energy quasiparticle excitations in high- T c cuprates, and to examine critically recent claims of consistency between the experimentally determined low-temperature thermodynamic and transport properties in certain cuprates and theoretical predictions based on standard perturbation theory for a BCS d-wave superconductor. Measurements of the low-temperature specific heat, thermal conductivity, microwave conductivity, penetration depth and scanning tunnelling microscopy are described, both in the Meissner state and in the mixed state. These results are then compared with the predictions of quasi-classical theory of a d-wave BCS superconductor and the self-consistent T-matrix approximation for both a single impurity and a finite impurity concentration. Detailed inspection reveals that significant discrepancies still exist between experiment and theory, with important implications for the development of a coherent model, perhaps beyond standard perturbation theory. Finally, I discuss how considerations of the possible effects of band structure, anisotropic scattering and low carrier concentration in the underdoped region of the cuprate phase diagram might reconcile some of the discrepancies that have emerged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号