首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electrodynamics and dispersion properties of a magnetized dusty plasma containing elongated and rotating charged dust grains are examined. Starting from an appropriate Lagrangian for dust grains, a kinetic equation for the dust grain and the corresponding equations of motion are derived. Expressions for the dust charge and dust current densities are obtained with the finite size (the dipole moment) of elongated and rotating dust grains taken into account. These charge and current densities are combined with the Maxwell-Vlasov system of equations to derive dispersion relations for the electromagnetic and electrostatic waves in a dusty magnetoplasma. The dispersion relations are analyzed to demonstrate that the dust grain rotation introduces new classes of instabilities involving various low-frequency waves in a dusty magnetoplasma. Examples of various unstable low-frequency waves include the electron whistler, the dust whistler, dust cyclotron waves, AlfvÉn waves, electromagnetic ion-cyclotron waves, as well as lower-hybrid, electrostatic ion cyclotron, modified dust ion-acoustic waves, etc. Also found is a new type of unstable waves whose frequency is close to the dust grain rotation frequency. The present results should be useful in understanding the properties of low-frequency waves in cosmic and laboratory plasmas that are embedded in an external magnetic field and contain elongated and rotating charged dust grains.  相似文献   

2.
The dispersion relation for the dust acoustic wave (DAW) in an unmagnetized dusty plasma cylindrical waveguide is derived, accounting for strong electrostatic interactions between charged dust grains. It is found that the boundary effect limits the radial extent of the DAW. The present result should be helpful for understanding the frequency spectrum of the DAW in a dusty plasma waveguide with strongly coupled charged dust grains.  相似文献   

3.
The physical and optical properties of plasmas are depended on dynamics of species in the discharge volume. Then, the presence of an electron beam, as a separate component, in a dusty plasma can modify the plasma structures through altering the discharge parameters. In this report, the linear propagation of acoustic modes in a collisionless dusty plasma contains electrons, ions and charged dust grains is investigated in the presence of an electron beam. Our analysis indicates that the electron beam can modify the dispersion relations of dust acoustic modes which resulted different data transportation in dusty plasmas. The obtained results are also examined for negative and positive charged dust grains with different number densities. The charge of dust grains represents an important role in the dynamics of the low frequency waves. Additionally, our findings reveal that the propagation of acoustic waves in dusty plasmas can be controlled by adjusting the electron number density of the beam and the cathode potential. Lastly, we obtian the destabilizing effects, originated from dust charge fluctuation, by reconsidering the dispersion relations of both dust acoustic modes.  相似文献   

4.
The effects of elongated rotating dust grains on the mode transitions of the dispersion relation of the surface dust ion-acoustic waves are investigated in a semi-bounded dusty plasma. The dispersion relation of the surface dust ion-acoustic wave is obtained by the plasma dielectric function with the specular reflection boundary condition. The result shows the existence of the dust ion-acoustic resonance modes in small and large wave number regions. It is also shown that the surface wave would be propagated in intermediate wave number domains. It is interesting to note that the wave propagation domain has been diminished with an increase of the rotation frequency.  相似文献   

5.
Results of an experimental study of mass transfer are presented for extended systems of dust particles observed in capacitively coupled RF discharge plasmas. The Green-Kubo relation and the Langevin equation are validated as applied to dust grain dynamics in laboratory plasmas. A procedure is proposed for evaluating the temperature, friction coefficient, and characteristic oscillation frequency for dust grains. Measured characteristics of the dust subsystem (diffusion coefficient, pair correlation function, and friction coefficient) are compared with available theoretical and numerical results.  相似文献   

6.
It is generally agreed that interstellar dust grains consist of two main components, namely, silicates and graphites. Some models, like MRN model, assume these grains to be homogeneous spheres following a power-law size distribution. This paper presents, in the framework of Mie theory, a parametrization of extinction spectrum curves of the silicates and the graphites separately in terms of frequency and the minimum and maximum of sizes in the distribution. Analytic expressions in ultraviolet and far-ultraviolet are presented for both types of grains. The values of maximum and minimum sizes for which these equations are valid have been identified. These equations can be useful in a number of situations involving silicate and graphite grains.  相似文献   

7.
祁学宏  段文山  陈建敏  王善进 《中国物理 B》2011,20(2):25203-025203
The effect of dust size distribution in ultracold quantum dusty plasmas are investigated in this paper. How the dispersion relation and the propagation velocity for the quantum dusty plasma vary with the system parameters and the different dust distribution are studied. It is found that as the Fermi temperature of the dust grains increases the frequency of the wave increases for large wave number dust acoustic wave. The quantum parameter of Hd also increases the frequency of the large wave number dust acoustic wave. It is also found that the frequency ω0 and the propagation velocity v0 of quantum dust acoustic waves all increase as the total number density increases. They are greater for unusual dusty plasmas than those of the usual dusty plasma.  相似文献   

8.
The effect of polarization force acting on massive charged dust grains is investigated analytically on the Jeans instability of self-gravitating dusty plasma. The gravitational force acting on the massive negatively charged interstellar dust grains are considered in presence of both electrical and polarization forces. The basic equations of the problem are formulated and a general dispersion relation is obtained using plane wave approximation in low frequency wave mode. The effect of polarization force in the dispersion relation of the problem, condition of the Jeans instability and expression of the critical Jeans wave number is examined. The unstable growing modes due to self-gravitational force are studied in the situation when polarization force on the dust grain exceeds over the electrical force in magnitude. It is observed that the polarization force increases the growth rate of the system.  相似文献   

9.
Previous considerations of dust acoustic waves is demonstrated to be inconsistent ‐ the required equilibrium state for perturbations was not defined since balance of plasma fluxes was neglecting. The self‐consistent treatment shows that plasma flux perturbations are accompanying any collective waves propagating in dusty plasmas and can play an important role in wave dispersion, wave damping and can create instabilities. This is illustrated by the derivation of dispersion relation for dust acoustic modes taking into account the plasma flux balances and plasma flux perturbations by waves. The result of this approach shows that the dust acoustic waves with linear dependence of wave frequency on the wave number exist only in restricted range of the wave numbers. Only for wave numbers larger than some critical wave number for low frequency modes the frequency can be have approximately a linear dependence on wave number and can be called as dust acoustic wave but the phase velocity of these waves is different from that which can be obtained neglecting the flux balance and depends on grain charge variations which are determined by the balance of fluxes. The presence of plasma fluxes previously neglected is the main typical feature of dusty plasmas. The dispersion relation in the range of small wave numbers is found to be mainly determined by the change of the plasma fluxes and is quite different from that of dust acoustic type, namely it is found to have the same form as the well known dispersion relation for the gravitational instability. This result proves in general way the existence of the collective grain attractions of negatively charged grains for for large distances between them and for any source of ionization. The attraction of grains found from dispersion relation of the dust acoustic branch coincides with that found previously for pair grain interactions using some models for the ionization source. For the existing experiments the effective Jeans length for such attraction is estimated to be about 8 – 10 times larger than the ion Debye length and the effective gravitational constant for the grain attraction is estimated to be several orders of magnitude larger than the usual gravitational constant. The grain attraction at large inter‐grain distances described by the gravitationlike grain instability is considered as the simplest explanation for observed dust cloud clustering, formation of dust structures including the plasma crystals. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The collective dynamics of an annulus dusty plasma formed between a co-centric conducting (non-conducting) disk and ring configuration is studied in a strongly magnetized radiofrequency (rf) discharge. A superconducting electromagnet is used to introduce a homogeneous magnetic field to the dusty plasma medium. In the absence of the magnetic field, the dust grains exhibit thermal motion around their equilibrium position. The dust grains start to rotate in the anticlockwise direction with increasing magnetic field (B > 0.02 T ), and the constant value of the angular frequency at various strengths of the magnetic field confirms the rigid body rotation. The angular frequency of dust grains linearly increases up to a threshold magnetic field (B > 0.6 T ) and after that its value remains nearly constant in a certain range of magnetic field. Further increase in magnetic field (B > 1 T ) lowers the angular frequency. Low value of the angular frequency is expected by reducing the width of the annulus dusty plasma or the input rf power. The azimuthal ion drag force due to the magnetic field is assumed to be the energy source which drives the rotational motion. The resultant radial electric field in the presence of a magnetic field determines the direction of rotation. The variation of floating (plasma) potential across the annular region at given magnetic field explains the rotational properties of the annulus dusty plasma in the presence of a magnetic field.  相似文献   

11.
非均匀尘埃等离子体中孤子的传播   总被引:2,自引:0,他引:2       下载免费PDF全文
运用约化摄动法研究了非均匀尘埃等离子体中孤子的传播情况. 在低阶近似下, 对于小的、但有限振幅的长波振动, 当分界面不连续变化时,孤子在不连续点的反射波与透射波均可由 KdV 方程来描述, 并给出了低阶近似情况下, 对于小的、但有限振幅的长波振动, 当入射波为单孤子时, 反射孤子与透射孤子的个数及其大小;当分界面是有限长度并连续变化时,对于小的、但有限振幅的长波振动, 尘埃声孤波由KdV型方程来描述,并由此给出了准孤子振幅、传播速度等参量在传播过程中的变化. 关键词: 尘埃等离子体 孤子 KdV方程 约化摄动法  相似文献   

12.
A theoretical model for the effect of dust grains on the self‐filamentation of a Gaussian electromagnetic beam propagating in a fully ionized plasma has been developed by employing the energy balance of the plasma constituents, perturbed electron and ion concentrations, and temperature. In this model, neutral atom ionization, re‐integration and accumulation of electrons and ions, photoelectric emission of electrons from the surface of dust grains, as well as elastic and charging collisions have also been considered. The effective dielectric constant in the presence of dust grains has been constructed. The effect of temporal growth of dust grains on various plasma parameters for different values of the dust density has been explored. The variation of the beam width with the normalized channel of propagation has been observed for distinct dust densities and dust charge states. It is observed that the non‐linearity induced by the effective dielectric constant in the presence of dust grains increases the self‐filamentation of the beam, thus enhancing the effective critical power with the dust density. Some of the outcomes of our approach are in line with experimental observations. These outcomes may be useful for explaining space and laboratory plasma experiments as well as for future studies in complex plasmas.  相似文献   

13.
The rotational dynamics of single dust grains in a weak magnetic field is investigated on a kinetic level. Experiments reveal spin-up of spherical dust grains and alignment of their magnetic moments parallel to the magnetic induction vector. The angular velocity of spinning prolate grains varies as magnetic induction increases to 250 G. Spinning dust grains are found to flip over only when the magnetic field magnitude is changing. The results demonstrate that dusty plasma has paramagnetic properties. Qualitative interpretations are proposed to explain newly discovered phenomena.  相似文献   

14.
Dust poses a serious threat to tokamak operation and safety. It is important to study the behaviour of dust grains under tokamak's discharge conditions, which depends heavily on their size and charge. Existing simulations mainly address issues on dust grains with radii larger than 1 μm, in which case, the drift effect due to electromagnetic fields can be safely ignored. For nanometer scale dust grains, however, the drift effect becomes significant and a new model based on guiding-centre system needs to be established. In this work, the NDS has been done under BOUT++ framework. The simulation contains two parts. Part one, NDS evaluates the charging and ablation processes of the dust grains. In the second part, the guiding-centre orbits of dust particles are tracked in tokamak plasmas, whose parameters are obtained from BOUT++, a highly desirable C++ code package for performing parallel plasma fluid simulations with an arbitrary number of equations in 3D curvilinear coordinates. The orbit of nanodust dynamics is described by guiding centre equations for simplicity, and these equations are numerically solved by conventional fourth-order Runge Kutta method. Simulations provide results such as trajectories and evolutions of dust particles with different sizes and velocities for different tokamak geometries. Results show tungsten dust grains with a radius of a few nanometers launched from outer midplane will oscillate before totally ablated in C-Mod. The oscillation in this case is driven by the ion drag force. Larger Nanodust with a radius of 100 nm, on the contrary, cannot be completely constrained by the electromagnetic field. The high plasma temperature and density in the seperatrix region causes severe dust ablation, resulting in total ablation within several ms.  相似文献   

15.
The aim of the present study is to determine the impact the finite size of dust particles has on the static and dynamic characteristics of the dust component of a plasma. Taking into account both the finite dimensions of dust grains and the plasma screening, a model expression is chosen for the interdust interaction potential. The static structure factor of dust particles is evaluated by iteratively solving the reference hypernetted‐chain approximation, which inherently contains the hard sphere model handled within the Percus–Yevick closure. The self‐consistent method of moments is then engaged to relate the static and dynamic structure factors by assuming that the second derivative of the dynamic structure factor with respect to the frequency vanishes at the origin. Thus, an analytical expression for the dynamic structure factor is validated over quite a broad domain of dusty plasma non‐ideality and grains packing fraction. The calculated spectrum of dust‐acoustic waves reveals the appearance of the roton minimum, which becomes less pronounced when the packing fraction of dust particles rises. It is also predicted that the wavenumber position of the roton minimum is de facto independent of the size of dust particles. New analytical expressions for the dust‐acoustic wave spectrum and decrement of damping are proposed and thoroughly checked.  相似文献   

16.
The cometary coma consists of neutral gas, plasma, and dust grains. The dust grains can influence both the neutral and charged coma’s constituents. Usually, the presence of dust particles in a plasma results in additional losses of both electrons and ions due to the plasma recombination on the particle surfaces. Solar radiation makes the impact of dust even more complicated depending on the solar flux, the dust number density, the photoelectric properties of the dust particles, the dust particle composition, the distribution of the sizes, etc. We propose a simple kinetic model evaluating the role of dust particles in the coma plasma chemistry and demonstrate that this role can be crucial, resulting in a nontrivial behavior of both the electron and ion densities of the plasma. We show that a coma’s dust particles can be negatively as well as positively charged depending on their composition. These opposite charges of the grains can result in fast coagulation of dust particles, thus, forming complex aggregate shapes of cometary grains. The text was submitted by the authors in English.  相似文献   

17.
The effect of electromagnetic radiation on the dynamics of arbitrarily shaped cosmic dust particles is investigated. The paper concentrates on the motion of dust grains near commensurability resonances with a planet—mean-motion resonances—and possible capture of the grains in the resonances. A particle is in resonance with a planet when the ratio of the mean motions of the two objects is a ratio of two small integers.

The most fundamental properties of the orbital evolution of spherical dust particles in the mean-motion resonances are shortly rederived: the solar wind effect is also included and the existing result is improved. The results for spherical particles are compared with the detailed numerical calculations for nonspherical particles. It is shown that the fundamental results valid for spherical grains do not hold, in general, for nonspherical particles. While spherical particles are always characterized by the secular decrease of the semi-major axes near mean-motion resonances, this may not be true for nonspherical particles. Nonspherical grains may exhibit an increase of the semi-major axes before capturing in the mean-motion resonances. This is caused by the effect of electromagnetic radiation on nonspherical dust grains. The eccentricities of spherical particles in the exterior resonances approach a limiting value, but nonspherical grains may not follow this behaviour. The interior resonances are characterized by a systematic decrease of eccentricity for spheres, but various behaviours exist in the case of irregularly shaped particles.

The motion of a nonspherical dust particle under the action of electromagnetic radiation may be characterized by a small change of the semi-major axis during a long-time interval, but the particle is not captured in any mean-motion resonance. This kind of motion does not exist for spherical grains.  相似文献   


18.
Nonlinear electrostatic wave structures in plasmas containing variable-charge dust grains, Boltz-mann electrons, and inertial ions are investigated. The charge variation is assumed to be caused by electron and ion currents at the grains. It is found that intense shock waves can exist. The dissipation in such shock waves originate from the process of dust charging.  相似文献   

19.
The various aspects of the interaction of electromagnetic radiation with cosmic dust particles are discussed. In particular, attention is paid to discrepancies between optical and physical behavior of realistically shaped particles and volume equivalent homogeneous spheres. The dynamical evolution of morphologically non-identical particles which are driven by gravity, electromagnetic radiation and the Lorentz forces can dramatically differ. Although spherical particles often enable analytical calculations, an orbital evolution of spheres cannot be considered as a representative evolution for real cosmic dust particles. The effect of electromagnetic radiation on the motion of dust grains plays a crucial role here. While irregularly shaped interstellar dust particles may be captured in the Solar System, the spherical particles will not survive due to close encounters with the Sun. Spherical grains can be captured almost only in the evaporation region (in the vicinity of the Sun), where they are destroyed due to high temperatures. The spherical dust particles ejected from comets will monotonously inspiral toward the Sun subject to the Poynting-Robertson effect. However, the non-spherical particles of the same origin may be temporarily stabilized at some heliocentric distances and thus their lifetime may be much longer than that for the Mie spheres. Some dust particles may also be captured in mean-motion resonances with planets (commensurability resonances). While spherical particles are always characterized by the secular decrease of the semi-major axes near mean-motion resonances, this may not be true for non-spherical particles. Resonant captures of arbitrarily shaped dust grains exist for exterior and interior mean-motion resonances with planets.  相似文献   

20.
The effects of dust size distribution and dust charge fluctuation of dust grains on the small but finite amplitude nonlinear dust ion-acoustic shock waves, in an unmagnetized multi-ion dusty plasma which contains negative ions, positive ions and electrons, are studied in this paper. A Burgers equation and its stationary solutions are obtained by using the reductive perturbation method. The analytical and numerical results show that the height with polynomial dust size distribution is larger than that of the monosized dusty plasmas with the same dust grains, but the thickness in the case of different dust grains is smaller than that of the monosized dusty plasmas. Furthermore, the moving speed of the shock waves also depend on different dust size distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号