首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we have investigated the absorption probability and Hawking radiation of electromagnetic field while it coupling with Einstein tensor in the background of 4-dimensional Reissner-Nordström(RN) black hole spacetime. Our results indicate that the properties of the absorption probability and Hawking radiation depend not only on the coupling parameter, but also on the parity of the electromagnetic field, which is quite different from those of the usual electromagnetic field without coupling in the 4-dimensional spacetime.The absorption probability, power emission spectra and luminosity of Hawking radiation decreases with the increase of coupling parameter α when the coupled electromagnetic field have odd-parity, and increases with the increase of coupling parameter α when the coupled electromagnetic field have even-parity.  相似文献   

2.
Asymptotic freedom of QCD is extended to the enlarged system including the top Yukawa and Higgs interactions. Necessary and sufficient conditions for asymptotic freedom are given. By expansion with respect to powers of, all couplings are determined which are compatible with asymptotic freedom. It is found that the Higgs coupling is a function of the top coupling and that both couplings have upper bounds which correspond to the nontrivial case of reduction. The ultraviolet behavior of the coupling is controlled in all orders of the expansion.Work supported in part by the NSF: PHY-91-23780.  相似文献   

3.
The field of chaotic synchronization has grown considerably since its advent in 1990. Several subdisciplines and "cottage industries" have emerged that have taken on bona fide lives of their own. Our purpose in this paper is to collect results from these various areas in a review article format with a tutorial emphasis. Fundamentals of chaotic synchronization are reviewed first with emphases on the geometry of synchronization and stability criteria. Several widely used coupling configurations are examined and, when available, experimental demonstrations of their success (generally with chaotic circuit systems) are described. Particular focus is given to the recent notion of synchronous substitution-a method to synchronize chaotic systems using a larger class of scalar chaotic coupling signals than previously thought possible. Connections between this technique and well-known control theory results are also outlined. Extensions of the technique are presented that allow so-called hyperchaotic systems (systems with more than one positive Lyapunov exponent) to be synchronized. Several proposals for "secure" communication schemes have been advanced; major ones are reviewed and their strengths and weaknesses are touched upon. Arrays of coupled chaotic systems have received a great deal of attention lately and have spawned a host of interesting and, in some cases, counterintuitive phenomena including bursting above synchronization thresholds, destabilizing transitions as coupling increases (short-wavelength bifurcations), and riddled basins. In addition, a general mathematical framework for analyzing the stability of arrays with arbitrary coupling configurations is outlined. Finally, the topic of generalized synchronization is discussed, along with data analysis techniques that can be used to decide whether two systems satisfy the mathematical requirements of generalized synchronization. (c) 1997 American Institute of Physics.  相似文献   

4.
5.
6.
The mode coupling contribution to the transverse transport coefficients of a three-dimensional one-component plasma in a strong external magnetic field is calculated. For very strong fields it is found that the tagged particle diffusion rate, the thermal diffusion rate, and the coefficient of viscosity in the plane orthogonal to the field have a Bohm-like B –1 behavior. The mode coupling mechanism responsible for such an effect is always one that involves the finite-frequency upper hybrid modes.  相似文献   

7.
Novel effects in magnetic multilayer structures, such as oscillatory magnetic coupling and "giant" magnetoresistance, have created new materials that allow for an order of magnitude higher sensitivity in the detection of magnetically-recorded data. Determination of their electronic and magnetic structures with angle-resolved photoemission and inverse photoemission reveals quantized states in the noble metal spacer layers which are connected with oscillatory magnetic coupling and have implications on magnetoresistance. These states can be understood by a simple interferometer model, including the spin-dependent interface reflectivity that polarizes them and transmits the magnetic coupling through the noble metal spacer.Current efforts are discussed, which aim towards fabricating quantum wires and lateral superlattices on metals by decorating steps at vicinal surfaces. STM work on the growth mode of such structures is presented, which uses spectroscopic contrast to distinguish different metals. Specific electronic states at decorated step edges are found with inverse photoemission.  相似文献   

8.
We study the case when the triple-Pomeron vertex is assumed to have a vectorial form, that is, the amplitude of high-mass diffractive dissociation vanishes as $V\propto \vec{q}_{t}\cdot\vec{e}$ as q t →0. We find that the available data in the triple-Reggeon region may be well described in such a ‘weak’ coupling scenario, providing that absorptive effects are taken into account. We compare this weak-vector coupling scenario with the strong and weak-scalar coupling scenarios. Corresponding predictions are presented for an LHC energy of 14 TeV.  相似文献   

9.
In this paper, we utilise the Chumbes-Holf da Silva-Hott (CHH) mechanism to investigate the issue of gauge field localization on a deformed brane constructed with one scalar field, which can be coupled to gravity minimally or non-minimally. The study of deformed defects is important because they contain internal structures which may have implications in braneworld models. With the CHH mechanism, we find that the massless zero mode of gauge field, in the case of minimal or non-minimal coupling is localized on the brane. Moreover, in the case of non-minimal coupling, it is shown that, when the non-minimal coupling constant is larger than its critical value, then the zero mode is localized on each sub brane.  相似文献   

10.
Motivated by recent experiments of a novel 5d Mott insulator in Sr2IrO4, we have studied the two-dimensional three-orbital Hubbard model with a spin-orbit coupling λ. The variational Monte Carlo method is used to obtain the ground state phase diagram with varying an on-site Coulomb interaction U as well as λ. It is found that the transition from a paramagnetic metal to an antiferromagnetic insulator occurs at a finite U=U(MI), which is greatly reduced by a large λ, characteristic of 5d electrons, and leads to the "spin-orbit-induced" Mott insulator. It is also found that the Hund's coupling induces the anisotropic spin exchange and stabilizes the in-plane antiferromagnetic order. We have further studied the one-particle excitations by using the variational cluster approximation and revealed the internal electronic structure of this novel Mott insulator. These findings are in agreement with experimental observations on Sr2IrO4.  相似文献   

11.
Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time, though the isotropy of space-time can be attained for a large proportionality constant. As far as evolution is concerned, depending on the sign of coupling constant the model allows both accelerated and oscillatory mode of expansion. A negative coupling constant leads to an oscillatory mode of expansion, whereas a positive coupling constant generates expanding Universe with late time acceleration. Both deceleration parameter and EoS parameter in this case vary with time and are in agreement with modern concept of space-time evolution. In case of a Bianchi type-I space-time the non-diagonal components lead to three different possibilities. In case of a full BI space-time we find that the spinor field nonlinearity and the massive term vanish, hence the spinor field Lagrangian becomes massless and linear. In two other cases the space-time evolves into either LRSBI or FRW Universe. If we consider a locally rotationally symmetric BI(LRSBI) model, neither the mass term nor the spinor field nonlinearity vanishes. In this case depending on the sign of coupling constant we have either late time accelerated mode of expansion or oscillatory mode of evolution. In this case for an expanding Universe we have asymptotical isotropization. Finally, in case of a FRW model neither the mass term nor the spinor field nonlinearity vanishes. Like in LRSBI case we have either late time acceleration or cyclic mode of evolution. These findings allow us to conclude that the spinor field is very sensitive to the gravitational one.  相似文献   

12.
The electron-phonon coupling constant in two-dimensional cuprate high temperature superconductors has been determined by the ultrasonic method. The electron-phonon coupling constant in the Van Hove scenario was found to increase with transition temperature Tc. is in the range of 0.025-0.060 which is 10-100 times smaller than the conventional three-dimensional Bardeen-Cooper-Schrieffer coupling constant. The characteristic Debye temperature θD does not correlate with Tc. These findings show that the interplay between the Debye frequency and electron-phonon coupling in the two-dimensional system and their variations have a combined effect in governing the transition temperature.  相似文献   

13.
The most general parametrization of the tbW vertex includes a right coupling \(V_R\) that is zero at tree level in the standard model. This quantity may be measured at the Large Hadron Collider where the physics of the top decay is currently investigated. This coupling is present in new physics models at tree level and/or through radiative corrections, so its measurement can be sensitive to non-standard physics. In this paper we compute the leading electroweak and QCD contributions to the top \(V_R\) coupling in the standard model. This value is the starting point in order to separate the standard model effects and, then, search for new physics. We also propose observables that can be addressed at the LHC in order to measure this coupling. These observables are defined in such a way that they do not receive tree level contributions from the standard model and are directly proportional to the right coupling. Bounds on new physics models can be obtained through the measurements of these observables.  相似文献   

14.
The variational method within the Hamiltonian formalism of quantum field theory has been used in order to investigate the effect of virtual pairs for four-body scalar systems consisting of two particles and two antiparticles of the same mass. The scalar particles and antiparticles interact via a massive or massless mediating scalar field. The ground state energy solutions of Fock-space variational trial states (\(|N{\bar {N}}N{\bar {N}}{ \rangle }+|N{\bar {N}}N{\bar {N}}N{\bar {N}\rangle }\)) of the relativistic wave equations have been studied. We have compared these results with the previous work of four-body system (variational trial states of the form \(|N{ \bar {N}}N{\bar {N}}{\rangle }\)) and we have shown that the inclusion of virtual pairs has a noticeable effect at low coupling and at high coupling the energy of the system is changed by an important amount. In other words, the calculations show that the inclusion of virtual pairs augments the binding energy of the four-body system by a substantial amount at strong coupling. This study can pave the way for some new ideas in order to investigate the effect of virtual pairs, for example, for a bound-states quark-antiquark or tetraquark systems in future.  相似文献   

15.
Kenric P. Nelson  Sabir Umarov 《Physica A》2010,389(11):2157-2088
By considering a nonlinear combination of the probabilities of a system, a physical interpretation of Tsallis statistics as representing the nonlinear coupling or decoupling of statistical states is proposed. The escort probability is interpreted as the coupled probability, with Q=1−q defined as the degree of nonlinear coupling between the statistical states. Positive values of Q have coupled statistical states, a larger entropy metric, and a maximum coupled-entropy distribution of compact-support coupled-Gaussians. Negative values of Q have decoupled statistical states and for −2<Q<0 a maximum coupled-entropy distribution of heavy-tail coupled-Gaussians. The conjugate transformation between the heavy-tail and compact-support domains is shown to be for coupled-Gaussian distributions. This conjugate relationship has been used to extend the generalized Fourier transform to the compact-support domain and to define a scale-invariant correlation structure with heavy-tail limit distribution. In the present paper, we show that the conjugate is a mapping between the source of nonlinearity in non-stationary stochastic processes and the nonlinear coupling which defines the coupled-Gaussian limit distribution. The effects of additive and multiplicative noise are shown to be separable into the coupled-variance and the coupling parameter Q, providing further evidence of the importance of the generalized moments.  相似文献   

16.
The first-principles calculations have been performed to understand the origin of magnetism in undoped GaN thin films. The results show that Ga vacancy, rather than that of N contributes the observed magnetism, and the magnetic moments mainly come from the unpaired 2p electrons at nearest-neighbor N atoms of the Ga vacancy. Calculations and discussions are also extended to bare and passivated GaN nanowires, We find that per Ga vacancy on the surface sites products the total magnetic moment of 1.0  while that inside of the nanowires can lead to the formation of a net moment of 3.0 . The coupling between two Ga vacancies is also studied and we found that the coupling is ferromagnetic coupling. The surface passivation with hydrogen is shown to strongly enhance the ferromagnetism. Our theoretical study not only demonstrates that GaN nanowire can be magnetic even without transition-metal doping, but also suggests that introducing Ga vacancy is a natural and an effective way to fabricate low-dimensional magnetic GaN nanostructures.  相似文献   

17.
18.
For massless models of quantum field theory, some general theorems are proved concerning the analytic continuation of the renormalization group functions as well as the effective coupling and the propagators. Starting points are analytic properties of the effective coupling and the propagators in the momentum variablek 2, which can be converted into analyticity of - and -functions in the coupling parameter . It is shown that the -function can have branch point singularities related to stationary points of the effective coupling as a function ofk 2. The type of these singularities of () can be determined explicitly. Examples of possible physical interest are extremal values of the effective coupling at space-like points in the momentum variable, as well as complex conjugate stationary points close to the realk 2-axis. The latter may be related to the sudden transition between weak and strong coupling regimes in quantum chromodynamics. Finally, for the effective coupling and for the propagators, the analytic continuation in both variablesk 2 and is discussed.On leave from the Max-Planck-Institut für Physik und Astrophysik, D-8000 München, Federal Republic of Germany  相似文献   

19.
The \({{\overline{\rm MS}}}\) -like schemes in QCD have in general the running coupling which contains Landau singularities, i.e., singularities outside the timelike semi-axis, at low squared momenta. As a consequence, evaluation of the spacelike quantities, such as current correlators, in terms of (powers of) such a coupling then results in quantities which contradict the basic principles of quantum field theories. On the other hand, in those QCD frameworks where the running coupling remains finite at low squared momenta (IR freezing), the coupling usually does not have Landau singularities in the complex plane of the squared momenta. I argue that in such QCD frameworks the spacelike quantities should not be evaluated as a power series, but rather as a series in derivatives of the coupling with respect to the logarithm of the squared momenta. Such series show considerably better convergence properties. Moreover, Padé-related resummations of such logarithmic derivative series give convergent series, thus eliminating the practical problem of series divergence due to renormalons.  相似文献   

20.
Holographic superconductors containing a non-minimal derivative coupling for the scalar field in a regular phantom plane symmetric black hole have been considered. We show that the parameter of the regular black hole b as well as the non-minimal derivative coupling parameter η affect the formation of the condensate as well as the conductivity in the superconductor. Moreover, b has a critical value in which the critical temperature Tc increases without a bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号