首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal.  相似文献   

3.
We construct a model in which neutrinos and anti-neutrinos acquire the same mass but slightly different energy dispersion relations. Despite CPT violation, spin-statistics is preserved. We find that leptogenesis can be easily explained within this model, without upsetting the solar, atmospheric and reactor neutrino data. Leptogenesis occurs without lepton-number violation and the non-equilibrium condition. We consider only three active Dirac neutrinos, and no new particles or symmetries are introduced.  相似文献   

4.
We report the results of an improved determination of the triple correlation DP·(p(e)×p(v)) that can be used to limit possible time-reversal invariance in the beta decay of polarized neutrons and constrain extensions to the standard model. Our result is D=[-0.96±1.89(stat)±1.01(sys)]×10(-4). The corresponding phase between gA and gV is ?AV=180.013°±0.028° (68% confidence level). This result represents the most sensitive measurement of D in nuclear β decay.  相似文献   

5.
We describe the results of an experiment to test for spacetime anisotropy terms that might exist from Lorentz violations. The apparatus consists of a pair of cylindrical superconducting cavity-stabilized oscillators operating in the TM010 mode with one axis east-west and the other vertical. Spatial anisotropy is detected by monitoring the beat frequency at the sidereal rate and its first harmonic. We see no anisotropy to a part in 10(13). This puts a comparable bound on four linear combinations of parameters in the general standard model extension, and a weaker bound of < 4 x 10(-9) on three others.  相似文献   

6.
General features of generation of the cosmological charge asymmetry in CPT noninvariant world are discussed. If the effects of CPT violationmanifest themselves only inmass differences of particles and antiparticles, the baryon asymmetry of the Universe hardly can be explained solely by breaking of CPT invariance. However, CPT noninvariant theories may lead to a new effect of distorting the usual equilibrium distributions. If this takes place, CPT violation may explain the baryon asymmetry of the Universe.  相似文献   

7.
Lorentz and CPT invariance are among the symmetries that can be investigated with ultrahigh precision in subatomic physics. Being spacetime symmetries, Lorentz and CPT invariance can be violated by minuscule amounts in many theoretical approaches to underlying physics that involve novel spacetime concepts, such as quantized versions of gravity. Regardless of the underlying mechanism, the low-energy effects of such violations are expected to be governed by effective field theory. This talk provides a survey of this idea and includes an overview of experimental efforts in the field.  相似文献   

8.
We analyze an approximate solution to the Dirac equation for an electron in a central potential, in particular, in a Coulomb potential, when Lorentz invariance is violated. A quasi-relativistic approximation for the Dirac equation in an external field has been derived. The directivity pattern of spontaneous emission for a polarized hydrogen atom has been found to be asymmetric.  相似文献   

9.
We present a class of interacting nonlocal quantum field theories, in which the CPT invariance is violated while the Lorentz invariance is present. This result rules out a previous claim in the literature that the CPT violation implies the violation of Lorentz invariance. Furthermore, there exists the reciprocal of this theorem, namely that the violation of Lorentz invariance does not lead to the CPT violation, provided that the residual symmetry of Lorentz invariance admits the proper representation theory for the particles. The latter occurs in the case of quantum field theories on a noncommutative space–time, which in place of the broken Lorentz symmetry possesses the twisted Poincaré invariance. With such a CPT-violating interaction and the addition of a C-violating (e.g., electroweak) interaction, the quantum corrections due to the combined interactions could lead to different properties for the particle and antiparticle, including their masses.  相似文献   

10.
11.
In theories with broken Lorentz symmetry, Cerenkov radiation may be possible even in vacuum. We analyze the Cerenkov emissions that are associated with the least constrained Lorentz-violating modifications of the photon sector, calculating the threshold energy, the frequency spectrum, and the shape of the Mach cone. In order to obtain sensible results for the total power emitted, we must make use of information contained within the theory which indicates at what scale new physics must enter.  相似文献   

12.
An attempt is made to incorporate the electromagnetic interaction in a Lorentz invariant but CPT violating non-local model with particle–antiparticle mass splitting, which is regarded as a modified QED. The gauge invariance is maintained by the Schwinger non-integrable phase factor but the electromagnetic interaction breaks C, CP and CPT symmetries. Implications of the present CPT breaking scheme on the electromagnetic transitions and particle–antiparticle pair creation are discussed. The CPT violation such as the one suggested in this Letter may open a new path to the analysis of baryon asymmetry since some of the Sakharov constraints are expected to be modified.  相似文献   

13.
We point out that neutrino events observed at Kamiokande and IMB from SN1987A disfavor the neutrino oscillation parameters preferred by the LSND experiment. For Δm2>0 (the light side), the electron neutrinos from the neutronization burst would be lost, while the first event at Kamiokande is quite likely to be due to an electron neutrino. For Δm2<0 (the dark side), the average energy of the dominantly events is already lower than the theoretical expectations, which would get aggravated by a complete conversion from to  . If taken seriously, the LSND data are disfavored independent of the existence of a sterile neutrino. A possible remedy is CPT violation, which allows different mass spectra for neutrinos and anti-neutrinos and hence can accommodate atmospheric, solar and LSND data without a sterile neutrino. If this is the case, Mini-BooNE must run in rather than the planned ν mode to test the LSND signal. We speculate on a possible origin of CPT violation.  相似文献   

14.
We comment on CP, T and CPT violation in the light of interesting new data from the CPLEAR and KTeV Collaborations on neutral kaon decay asymmetries. Other recent data from the CPLEAR experiment, constraining possible violations of CPT and the ΔSQ rule, exclude the possibility that the semileptonic-decay asymmetry AT measured by CPLEAR could be solely due to CPT violation, confirming that their data constitute direct evidence for T violation. The CP-violating asymmetry in KLee+ππ+ recently measured by the KTeV Collaboration does not by itself provide direct evidence for T violation, but we use it to place new bounds on CPT violation.  相似文献   

15.
We investigate the sensitivities of future neutrino oscillation experiments for measuring the neutrino mass squared differences and leptonic mixing angles independently with neutrinos and anti-neutrinos. We update the expected sensitivities of Neutrino Factories to the “atmospheric” (anti-)neutrino parameters using an optimized setup. A dedicated β-Beam facility, in combination with a SPMIN reactor experiment, could give excellent sensitivities also to the “solar” parameters, for neutrinos and anti-neutrinos respectively. A signal of a different mass matrix for neutrinos and anti-neutrinos would imply CPT violation and non-locality of the underlying particle theory.  相似文献   

16.
The spin precession frequency of muons stored in the (g-2) storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for a nonzero delta omega a(=omega a mu+ - omega a mu-) and a sidereal variation of omega a mu+/-). No significant effect is found, and the following limits on the standard-model extension parameters are obtained: bZ = -(1.0+/-1.1) x 10(-23) GeV; (m mu dZ0 + HXY)=(1.8+/-6.0) x 10(-23) GeV; and the 95% confidence level limits b perpendicular mu+ <1.4 x 10(-24) GeV and b perpendicular mu- <2.6 x 10(-24) GeV.  相似文献   

17.
18.
A search for sidereal variations in the frequency difference between co-located 129Xe and 3He Zeeman masers sets the most stringent limit to date on leading-order Lorentz and CPT violation involving the neutron, consistent with no effect at the level of 10(-31) GeV.  相似文献   

19.
We discuss modifications to the concept of an "antiparticle," induced by a breakdown of the CPT symmetry at a fundamental level, realized within an extended class of quantum gravity models. The resulting loss of particle-antiparticle identity in the neutral-meson system induces a breaking of the Einstein-Podolsky-Rosen correlation imposed by Bose statistics. This is parametrized by a complex parameter associated with the contamination by the "wrong symmetry" state. The physical consequences are studied, and novel observables of CPT violation in phi factories are proposed.  相似文献   

20.
We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the standard-model extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature, and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of 20-510 over the current best limits found by using the MINOS near detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号