首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have studied nucleation in superfluid 3He across the A-B phase transition driven by a magnetic field, in a controllable environment at very low temperatures. Both B-->A and A-->B secondary nucleation appear to be governed by the survival of pockets of the new phase trapped at surfaces. We find that, at fields near B(AB), primary A-->B nucleation cannot be triggered by ionizing or neutron irradiation even at very high intensities. In our cell primary A-->B nucleation can only be triggered externally by mild mechanical shock.  相似文献   

3.
We find that in very elongated 3D trapped Bose gases, even at temperatures far below the BEC transition temperature T(c), the equilibrium state will be a 3D condensate with fluctuating phase (quasicondensate). At sufficiently low temperatures the phase fluctuations are suppressed and the quasicondensate turns into a true condensate. The presence of the phase fluctuations allows for extending thermometry of Bose-condensed gases well below those established in current experiments.  相似文献   

4.
According to classical theory of phase transition, fluctuations in systems with low dimensions are so violent that the phase boundary between unstable and metastable states would be smeared. In this experiment, we measure the growth of surface fluctuations on an unstable polymer film with a thickness, h0 = 5.1 nm, which is much less than the spinodal thickness, h sp (= 243 nm) thereby the film is in the very deep unstable region. We find the film to show rupturing behavior markedly different from that of an unstable film. Specifically, nucleation of holes – a characteristic rupturing feature of metastable films – is prominent, which is surprising for a film in the very deep unstable region even provision is given to thin films being two-dimensional and hence are susceptible to broadening of the phase boundary by fluctuations. Monte Carlo simulation shows that the nucleated holes can be caused by stochastic thermal fluctuations. Our result thus confirms the broadening of the phase boundary in thin films by fluctuations to be extremely large. As a consequence, the phase behavior of thin films cannot be predicted by the mean-field calculated phase boundary, which however has been the general practice so far.  相似文献   

5.
6.
We computationally study shear-induced segregation of different-sized particles in vertical chute flow. We find that, for low solid fractions, large particles segregate toward regions of low shear rates where the granular temperature (velocity variance) is low. As the solid fraction increases, this trend reverses, and large particles segregate toward regions of high shear rates and temperatures. We find that this is a global phenomenon: local segregation trends reverse at high system solid fractions even where local solid fractions are small. The reversal corresponds to the growth of a single enduring cluster of 30%-60% of the particles that we propose changes the segregation dynamics.  相似文献   

7.
We study the aggregation mechanisms of metal nanoclusters on the Si(111)7 × 7 reconstructed surface using a correlated nucleation model, in which the nucleation and growth behavior of a cluster (irreversible or partially reversible growth) depend on the local environment of the cluster. The kinetic Monte Carlo simulation of the model shows that with increasing temperature, the correlated nucleation effect causes a transition of growth behavior from asymmetric adatom aggregation between faulted and unfaulted half cells with a strong preference of occupation of faulted half cells, to compact cluster aggregation with a low occupation preference at high temperatures. As a result the preference as a function of the temperature exhibits a nonmonotonous behavior, with a maximum located at the temperature at which the transition of growth behavior has been observed. Both the simulated cluster morphologies and the quantitative analysis of the cluster distribution are in good agreement with the results observed from relevant growth experiments.  相似文献   

8.
We show that a distinct class of colloidal crystals, which consist of mutually overlapping particles, has a novel and universal response to steady shear. After a shear-banding regime at low shear rates, strings parallel to the flow direction form as shear grows, which order on a hexagonal crystal in the gradient-vorticity plane. At even higher shear, lateral fluctuations of the strings, enhanced by hydrodynamics, lead to a disordered, fluid state. Our results are based on appropriate simulation techniques that correctly account for hydrodynamics. We also find that shear vastly accelerates the nucleation rates of supercooled fluids into the cluster crystals.  相似文献   

9.
The crystallization processes of amorphous, glassy‐state poly(ethylene terephthalate) (PET) at two temperatures, a low temperature near T g where PET has a slow crystallization speed and a middle temperature (about 55°C above T g ) where PET crystallization is rapid, were monitored in situ by a time‐resolved small‐angle light scattering (SALS) device. It was found that large‐scale fluctuations happened prior to the crystallization at both temperatures, but the kind of fluctuation had a temperature dependence: at the middle temperature, pure density fluctuation took place during the induction period, whereas at low temperature, both density fluctuation and orientation fluctuation occurred, but the latter was the dominant factor. Analyses of the kinetics of these two kinds of fluctuation processes demonstrated that the spinodal decomposition (SD) type of phase‐separation character was undistinguishable in the SALS scale, while the nucleation‐growth (NG) type of phase behavior could describe the scattering results as well.  相似文献   

10.
We study the relaxation to equilibrium of two dimensional islands containing up to 20 000 atoms by Kinetic Monte Carlo simulations. We find that the commonly assumed relaxation mechanism - curvature-driven relaxation via atom diffusion - cannot explain the results obtained at low temperatures, where the island edges consist in large facets. Specifically, our simulations show that the exponent characterizing the dependence of the equilibration time on the island size is different at high and low temperatures, in contradiction with the above cited assumptions. Instead, we propose that - at low temperatures - the relaxation is limited by the nucleation of new atomic rows on the large facets: this allows us to explain both the activation energy and the island size dependence of the equilibration time. Received 7 December 1998 and Received in final form 18 March 1999  相似文献   

11.
Quantum fluctuations cause a decay of the supercurrent in thin superconducting wires making them resistive even at very low temperatures. We derive a microscopic effective action formalism that goes beyond the usual TDGL approach and study quantum fluctuations of the superconducting order parameter at all temperatures belowT C . We calculate the quantum phase slip rate in thin superconducting wires, demonstrate the importance of dissipation in a quantum phase slip process, and evaluate the resistanceR(T) of the wire. In very thin wires the effect is well observable, even at zero temperature.  相似文献   

12.
We study the nucleation and growth of flame fronts in slow combustion. This is modeled by a set of reaction-diffusion equations for the temperature field, coupled to a background of reactants and augmented by a term describing random temperature fluctuations for ignition. We establish connections between this model and the classical theories of nucleation and growth of droplets from a metastable phase. Our results are in good agreement with theoretical predictions.  相似文献   

13.
Surfactant-mediated epitaxial growth is studied with a realistic model, which includes three main kinetic processes: diffusion of adatoms on the surfactant terrace, exchange of adatoms with their underneath surfactant atoms, and reexchange in which an exchanged adatom resurfaces to the top of the surfactant layer. The scaling behavior of nucleus density and island size distributions in the initial stage of growth is investigated by using kinetic Monte Carlo simulations. The results show that the temperature dependence of nucleus density and island size distributions governed by the reexchanging-controlled nucleation at high temperatures exhibits similar scaling behavior to that obtained by the standard diffusion-mediated nucleation at low temperatures. However, at intermediate temperatures, the exchanging-controlled nucleation leads to an increase of nucleus density with temperature, while the island size distribution scales to a monotonically decreasing function, showing nonstandard scaling behavior.  相似文献   

14.
We investigate the highly frustrated spin and orbital superexchange interactions in cubic vanadates. The fluctuations of t(2g) orbitals trigger a novel mechanism of ferromagnetic interactions between spins S = 1 of V3+ ions along one of the cubic directions which operates already in the absence of Hund's rule exchange J(H), and leads to the C-type antiferromagnetic phase in LaVO3. The Jahn-Teller effect can stabilize the orbital ordering and the G-type antiferromagnetic phase at low temperatures, but large entropy due to orbital fluctuations favors again the C phase at higher temperatures, as observed in YVO (3).  相似文献   

15.
We consider the multi-point equal time height fluctuations of the one-dimensional polynuclear growth model in half-space. For special values of the nucleation rate at the origin, the multi-layer version of the model is reduced to a process with a determinantal weight, for which the asymptotics can be analyzed. In the scaling limit, the fluctuations near the origin are shown to be equivalent to those of the largest eigenvalue of the orthogonal/symplectic to unitary transition ensemble at soft edge in random matrix theory.  相似文献   

16.
We show that low area density Ge/Si(100) island ensembles comprised solely of hut and pyramid clusters do not undergo Ostwald ripening during days-long growth temperature anneals. In contrast, a very low density of large, low chemical potential Ge islands reduce the supersaturation causing the huts and pyramids to ripen. By assuming that huts lengthen by adding single {105} planes that grow from apex-to-base, we use a mean-field facet nucleation model to interpret these experimental observations. We find that each newly completed plane replenishes the nucleation site at the hut apex and depletes the Ge supersaturation by a fixed amount. This provides a feedback mechanism that reduces the island growth rate. As long as the supersaturation remains high enough to support nucleation of additional planes on the narrowest hut cluster, Ostwald ripening is suppressed on an experimental time scale.  相似文献   

17.
Quasi-one-dimensional Bose–Einstein condensates (BECs) in elongated traps exhibit significant phase fluctuations even at very low temperatures. We present recent experimental results on the dynamic transformation of phase fluctuations into density modulations during time of flight and show the excellent quantitative agreement with the theoretical prediction. In addition we confirm that, under our experimental conditions, in the magnetic trap density modulations are strongly suppressed even when the phase fluctuates. We also discuss our theoretical results on control of the condensate phase by employing a time-dependent perturbation. Our results set important limitations on future applications of BECs in precision atom interferometry and atom optics, but at the same time suggest pathways to overcome these limitations. Received: 17 August 2002 / Published online: 15 January 2003 RID="*" ID="*"Corresponding author. Fax: +49-511/762-3023, E-mail: Helge.Kreutzmann@ITP.uni-hannover.de  相似文献   

18.
Copper and niobium are mutually immiscible in the solid state and exhibit a large positive enthalpy of mixing in the liquid state. Using vapour quenching via magnetron co-sputter deposition, far-from equilibrium amorphous Cu–Nb films have been deposited which exhibit a nanoscale phase separation. Annealing these amorphous films at low temperatures (~200?°C) initiates crystallization via the nucleation and growth of primary nanocrystals of a face-centred cubic Cu-rich phase separated by the amorphous matrix. Interestingly, subsequent annealing at a higher temperature (>300?°C) leads to the polymorphic nucleation and growth of large spherulitic grains of a body-centred cubic Nb-rich phase within the retained amorphous matrix of the partially crystallized film. This sequential two-stage crystallization process has been investigated in detail by combining transmission electron microscopy [TEM] (including high-resolution TEM) and atom probe tomography studies. These results provide new insights into the crystallization behaviour of such unusual far-from equilibrium phase-separated metallic glasses in immiscible systems.  相似文献   

19.
We present Monte Carlo experiments on nucleation theory in the nearest-neighbor three-dimensional Ising model and in Ising models with long-range interactions. For the nearest-neighbor model, our results are compatible with the classical nucleation theory (CNT) for low temperatures, while for the long-range model a breakdown of the CNT was observed near the mean-field spinodal. A new droplet model and a zeroth-order theory of droplet growth are also presented.Supported in part by grants from ARO, ONR, and NSF.  相似文献   

20.
The kinetics of ordering of the Au4Zn alloy is investigated using X-ray diffractometry. It is established that the ordering and growth of domains inside the ordered phase are multistage processes. These processes are characterized by nucleation and growth of the ordered phase. The kinetics of growth of domains involves the nucleation and growth stages, as well as stages in which the crystal lattice axes have preferred or equally probable directions. The stages are more pronounced at low annealing temperatures. The duration of particular stages of the evolution of antiphase domains and their sizes depend on the annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号