首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ground-state magnetic properties of the spin-2 transverse Ising model with a longitudinal crystal field are studied within the framework of mean-field theory (MFT) and effective-field theory (EFT), respectively. The phase diagrams and magnetization curves are examined in detail. It is found that the system exhibits a tricritical behavior in the ground-state phase diagrams. Some interesting phenomena have been found, especially the first-order phase transition from one ordered phase to the other ordered phase, which is due to the high spin. The spin correlation has important effect on the magnetic properties of the system. We also find that the ground-state phase diagrams of the spin-2 transverse Ising model are very different from those of the spin-3/2 transverse Ising model.  相似文献   

2.
Properties of ferromagnetic spin-1 Bose gases above and at the temperature of Bose-Einstein condensation are studied in the presence of a magnetic field. The equation of state is given in a mean-field approximation. It is found that there exists a critical magnetic field and below that two phases coexist with different particle densities. The stability of the system is also investigated with the help of the susceptibility matrix. The dynamics of the system is worked out in the Random Phase Approximation and the soft mode corresponding to the critical point is given.  相似文献   

3.
Within a mean-field approach, the stationary states of the kinetic spin-1 Blume-Capel model in the presence of a time-dependent oscillating external magnetic field is studied. The Glauber-type stochastic dynamics is used to describe the time evolution of the system and obtain the mean-field dynamic equation of motion. The dynamic phase-transition points are calculated and phase diagrams are presented in the temperature and crystal-field interaction plane. According to the values of the magnetic field amplitude, three fundamental types of phase diagrams are found: One exhibits a dynamic tricritical point, while the other two exhibit a dynamic zero-temperature critical point. The text was submitted by the authors in English.  相似文献   

4.
We show that quantum and thermal fluctuations in spin-2 Bose-Einstein condensates lift the accidental degeneracy of the mean-field phase diagram. Fluctuations select the uniaxial (square biaxial) nematic state for scattering lengths a4>a2 (a4相似文献   

5.
采用截断求和法和半经典近似,以二维理想玻色气体为例,研究了磁场和简谐势阱中低维荷电自旋-1玻色子的相变及磁性质.结果表明,电荷-磁场和自旋-磁场作用的竞争导致玻色-爱因斯坦凝聚临界温度随磁场的增大先略微上升后缓慢下降.截断求和法能够有效的改进半经典近似的不足.最后,讨论了磁化强度由抗磁性到顺磁性的转变及自旋因子临界值随磁场和温度的变化.  相似文献   

6.
Polarization-dependent phase-contrast imaging is used to resolve the spatial magnetization profile of an optically trapped ultracold gas. This probe is applied to Larmor precession of degenerate and nondegenerate spin-1 87Rb gases. Transverse magnetization of the Bose-Einstein condensate persists for the condensate lifetime, with a spatial response to magnetic field inhomogeneities consistent with a mean-field model of interactions. In comparison, the magnetization of the non-condensed gas decoheres rapidly. Rotational symmetry implies that the Larmor frequency of a spinor condensate be density independent, and thus suitable for precise magnetometry with high spatial resolution.  相似文献   

7.
The magnetic behaviors of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system on a square lattice are studied with the mean-field approximation (MFA) based on the Bogoliubov inequality for the free energy. A Landau expansion of the free energy in the order parameter is also described in this work. In particular, we investigate the effect of a single-ion anisotropy on the compensation phenomenon.  相似文献   

8.
We present phase diagrams for a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system on a square lattice in the presence of a time dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The dynamic phase transition points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p) and ferrimagnetic (i) phases, and one coexistence or mixed phase region, namely the i+p, that strongly depend on interaction parameters. The system exhibits the dynamic tricritical point and the reentrant behaviors.  相似文献   

9.
We study spin-1 bosons in an optical lattice under a magnetic field with the Gutzwiller approximation for the Bose-Hubbard model. Phase boundary curves between superfluids and Mott insulators depend continuously on the magnetic field, and this provides better results than those obtained with the perturbative mean-field approximation. The phase boundary curve as a function of magnetic field has a sharp cusp structure under certain circumstances. In superfluid phases, both the spin magnetizations and fluctuations in the total number of bosons show strong magnetic field dependence, which is related to the fact that both first-and second-order transitions appear on the phase boundary curve according to the magnetic field.  相似文献   

10.
We calculate the dynamic phase transition (DPT) temperatures and present the dynamic phase diagrams in the kinetic mixed spin-1/2 and spin-5/2 Ising model under the presence of a time-dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the set of mean-field dynamic equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The DPT points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain four fundamental phases and three coexistence or mixed phases, which strongly depend on interaction parameters. The phase diagrams are discussed and a comparison is made with the results of the other mixed spin Ising systems.  相似文献   

11.
We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.  相似文献   

12.
A quantum Ising-like spin-1 model characterized by quadrupolar interaction, coupled to an external anisotropic field with both dipole and quadrupole momenta is analyzed. The general phase diagram (including temperature), as well as order parameter, specific heat, and susceptibility are evaluated in the mean-field approximation and exibit a rich structure with transitions of 2° and 1° order and tricritical points. ForT=0 the phase diagram is examined also by a recently formulated improved version of mean-field theory which has the usual mean-field theory as its zero-th order approximation.  相似文献   

13.
The magnetic behaviors of a mixed spin-1 and spin-2 Heisenberg ferrimagnetic system on a square lattice are studied by using the double-time temperature-dependent Green’s function technique. In order to decouple the higher order Green’s functions, Anderson and Callen’s decoupling and random phase approximations have been used. The system is described in the presence of an external magnetic field. We illustrate the influences of the nearest- and next-nearest-neighbor interactions and the single-ion anisotropies with an external magnetic field on compensation and critical temperatures. We found that the system that includes only the nearest-neighbor interaction and the single-ion anisotropies does not have a compensation temperature. When the next-nearest-neighbor interactions exceed a certain minimum value, a compensation temperature begins to appear. For some negative values of single-ion anisotropies, there exist first-order phase transitions. The system has first-order phase transition properties when it is under the influence of an external magnetic field.  相似文献   

14.
The crystal-field effect of spin-3/2 transverse Ising model is studied with the scheme of mean-field approximation. The influences of the crystal field and the transverse field on the phase diagram of the system are discussed.  相似文献   

15.
刘伟杰  辛子华  陈思伦  张聪艳 《中国物理 B》2013,22(2):27501-027501
The magnetic properties of a mixed spin-2 and spin-1/2 ferromagnetic diamond chain are studied by effective-field theory and Monte Carlo(MC) simulation based on the Ising model.The temperature dependences of magnetization,magnetic susceptibility,internal energy,and specific heat are studied,respectively.The exchange interaction dependences of magnetization and the critical temperature are calculated by MC simulation.The changes of magnetization depending on the field increasing and then the field decreasing under steady-static conditions are also given.  相似文献   

16.
J Qin  X Jian  Q Gu 《J Phys Condens Matter》2012,24(36):366007
The magnetic properties of a charged spin-1 Bose gas with ferromagnetic interactions are investigated within mean-field theory. It is shown that a competition between paramagnetism, diamagnetism and ferromagnetism exists in this system. It is shown that diamagnetism, being concerned with spontaneous magnetization, cannot exceed ferromagnetism in a very weak magnetic field. The critical value of reduced ferromagnetic coupling of the paramagnetic phase to ferromagnetic phase transition [Formula: see text] increases with increasing temperature. The Landé-factor g is introduced to describe the strength of the paramagnetic effect which comes from the spin degree of freedom. The magnetization density [Formula: see text] increases monotonically with g for fixed reduced ferromagnetic coupling [Formula: see text] as [Formula: see text]. In a weak magnetic field, ferromagnetism makes an immense contribution to the magnetization density. On the other hand, at a high magnetic field, the diamagnetism tends to saturate. Evidence for condensation can be seen in the magnetization density at a weak magnetic field.  相似文献   

17.
The exact solution of the Corben–Schwinger equations is obtained for spin-1 particles without an anomalous magnetic moment in a uniform magnetic field. The exact Hamiltonian in the Foldy–Wouthuysen representation is derived. The conservation of projections of the polarization operator onto four directions is proved. The approximate conservation of projections of this operator onto the horizontal axes of the cylindrical coordinate system is established. For spin-1 particles with the anomalous magnetic moment, the Hamiltonian in the Foldy–Wouthuysen representation is deduced within first order terms in the Planck constant. Dynamics of spin-1 particles with the anomalous magnetic moment and their spins in the strong uniform magnetic field are calculated.  相似文献   

18.
We extend the recent paper [W. Jiang, V-C. Lo, B-D. Bai, J. Yang, Physica A 389 (2010) 2227-2233] to present a study, within a mean-field approach, the dynamic magnetic properties of the mixed spin-2 and spin-5/2 Ising ferrimagnetic system, which corresponds the molecular-based magnetic materials AFeIIFeIII(C2O4)3 [ A=N(n-CnH2n+1)4, n=3-5], by using the Glauber-type stochastic dynamics. This mixed Ising ferrimagnetic system is used on a layered honeycomb lattice in which FeII (S=5/2) and FeIII (σ=2) occupy sites. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first-or second-order) phase transitions. We also present the dynamic phase diagrams and study the dynamic magnetic hysteresis loop behaviors of the kinetic mixed spin-2 and spin-5/2 Ising ferrimagnetic system. The results are compared with some experimental and theoretical works and a good overall agreement is found.  相似文献   

19.
Based on the mean-field theory and Glauber-type stochastic dynamics, the dynamic hysteresis loops (DHLs) of the spin-2 Ising model are studied on the bilayer square lattice. The DHLs are given for different values of temperature, crystal-field, exchange interaction and oscillating field frequency. It is found that the physical parameters have a strong effect on the shape and number of the DHLs. The results are compared with some theoretical and experimental works and found in a qualitatively good agreement.  相似文献   

20.
Jia-Ying Yang 《中国物理 B》2022,31(6):60504-060504
Based on the mean-field theory, we investigate the thermodynamic properties of the two-dimensional (2D) charged spin-1/2 Fermi gas. Landé factor g is introduced to measure the strength of the paramagnetic effect. There is a competition between diamagnetism and paramagnetism in the system. The larger the Landé factor, the smaller the entropy and specific heat. Diamagnetism tends to increase the entropy, while paramagnetism leads to the decrease of the entropy. We find that there exists a critical value of Landé factor for the transition point due to the competition. The entropy of the system increases with the magnetic field when g < 0.58. With the growth of paramagnetism, when g > 0.58, the entropy first decreases with the magnetic field, then reaches a minimum value, and finally increases again. Both the entropy and specific heat increase with the temperature, and no phase transition occurs. The specific heat tends to a constant value at the hightemperature limit, and it approaches to zero at very low temperatures, which have been proved by the analytical calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号