首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A key to understand the physics of heavy Fermion systems is the competition between the RKKY interaction and the Kondo screening effect of magnetic moments. The Kondo lattice model is a theoretical model for which one can study the interplay. Recently the ground state phase diagram of the one‐dimensional Kondo lattice model has been completed. After reviewing the properties of the three phases in the phase diagram we discuss the Kondo insulator in one‐dimension with particular emphasis on the difference between the spin excitation gap and the charge excitation gap. We argue that the Kondo insulators may be distinguished from the ordinary band insulators by the difference between the two gaps. Another topic which is discussed in this article is the complicated magnetic phase diagram of the low‐carrier‐density system of cerium monopnictides. We propose that the new mechanism which exists for Kondo semimetals may be responsible for the complicated magnetic structures in these compounds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The structural, electronic and magnetic properties of the Kondo-lattice system CeRuSi2 are experimentally investigated and analyzed in the series of other ternary cerium compounds. This system is shown to be an excellent model system demonstrating coexistence of the Kondo effect and anomalous ferromagnetism with a small magnetic moment which is confirmed by magnetic and μSR measurements. Data on specific heat, resistivity, heat conductivity and Seebeck coefficient are presented. Being deduced from the resistivity and specific heat data, a non-Fermi-liquid behavior is observed at low temperatures, which is unusual for a ferromagnetic Kondo system. A comparison with other magnetic Kondo lattices is performed.  相似文献   

3.
Using the Coqblin-Schrieffer exchange interaction, we investigate the Kondo effect for a magnetic impurity under the crystalline field, as occuring in La or Y alloys containing cerium impurities. The Hamann typet-matrix equation for the conduction electron scattered by a magnetic impurity is derived and solved, using the method of Zittarz and Müller-Hartmann. We find a Kondo type anomaly and a decreased Kondo temperature due to the crystalline field splittings. The resistivity, entropy and specific heat are calculated and they show some characteristic behavior due to the crystalline field splittings.  相似文献   

4.
To examine the effect of hybridization of 4f electrons with conduction electrons on the crystal field potential using neutron spectroscopy, we studied the effects of the crystal electric field (CEF) in intermetallic compounds of the type ReNi, in which chemical substitution is followed by a transition of the cerium ions from an intermediate valence state to the Kondo state. Measurements were performed both on cerium ions in the compounds Ce1−x LaxNi (x=0.5, 0.8), where they have a whole-number population of the 4f shell, and on the paramagnetic impurity ion Nd in the series of compounds Re1−x NdxNi (Re=Ce, La, Y), in which the cerium ions are found either in an intermediate valence state or in the Kondo state. From the neutron inelastic magnetic scattering spectra on Nd ions, we have reconstructed the crystal field parameters in ReNi compounds and calculated the CEF level diagram of Ce ions in these compounds as functions of the interion distances Re-Ni. The results of our calculations are in good agreement with the experimentally determined splitting diagram of the ground-state multiplet of the Ce ions. We have determined that as the degree of hybridization with the conduction electrons grows the CEF potential varies considerably and the effective splitting of the 4f shell of the cerium ions increases. The estimated energy scale of the splitting of the ground-state multiplet of the Ce3+ ions in the ReNi CEF (ΔCEF∼15 meV) turns out to be commensurate with the Kondo temperature (T K ;140 K for CeNi. Analysis indicates that the CEF potential has a substantial effect on the formation of the valence-unstable ground state of the f shell in this compound. Zh. éksp. Teor. Fiz. 113, 1731–1747 (May 1998)  相似文献   

5.
The structural and elastic properties of cerium chalcogenides (CeZ, Z = S, Se, Te) under high pressure have been investigated by using the potential model considered up to third nearest neighbor interaction. The computed values of B1-B2 phase transition pressure, equation of state (compression curve), bulk modulus, its first order pressure derivative and elastic constants in the case of cerium chalcogenides agree well with the experimental results. The present study shows the anomalous behavior of cerium chalcogenides in comparison to the alkaline earth chalcogenides, due to the presence of Kondo effect and reentrant valence behavior of Ce in cerium chalcogenides.  相似文献   

6.
It is suggested that molecules containing cerium ions with a formal valency +4 may form a ground state resembling a Kondo singlet. This is demonstrated explicitly by choosing cerocene as an example. Experimental consequences for these systems are discussed.  相似文献   

7.
The effects of the crystal field (CF) on the paramagnetic Pr ion in a number of compounds of the type R1−x PrxNi (R = Ce, La, Y), in which a transition of the cerium ions from an intermediate-valence into a Kondo state occurs as La is substituted for Ce, are investigated. The level schemes of the Pr ion in the CF are reconstructed from inelastic neutron scattering spectra and the temperature dependence of the heat capacity in different magnetic fields (B=0–8 T). The parameters of the low-symmetry CF in the compounds RNi are determined from the experimental data. It is established that in the Kondo regime the hybridization of the f electrons with conduction electrons only gives a proportional increase in all the parameters of the CF potential. At the same time, partial delocalization of the f electrons in the intermediate-valence state results in charge redistribution, which is manifested in different scales for the changes in the different CF parameters. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 12, 947–952 (25 June 1996)  相似文献   

8.
The striking differences which are often observed in the behaviour of unstable ions with the same valence can be traced to different orbital splittings. This suggestion is discussed in terms of a degenerate Anderson model which is treated in the single ion non-crossing approximation (NCA). Using analytical methods to solve the NCA equations of the anisotropic model the parametrization of the theory is made transparent and the numerical solution of the NCA atT=0 is simplified considerably. The influence of a low ground state degeneracy of the magnetic impurity on the drop of the Kondo temperature is emphasized. Numerical results for the NCA equations are given for a cerium impurity with either a doublet or a quartet ground state. Comparison with the mean field solution of the anisotropic model is made.This work was supported by the Deutsche Forschungsgemeinschaft through SFB 125 (Aachen-Jülich-Köln)  相似文献   

9.
Specific heat measurements performed in the temperature range 1.5 to 30 K in the compounds CeNixPt1 - x with x = 0.5, 0.8 and 0.95 are presented. The analysis of the magnetic entropy enhances the results obtained previously by magnetic measurements: i) the reduction of the cerium moment due to the Kondo effect; ii) the increase of the importance of the Kondo effect in competition with the RKKY interactions when Pt is replaced by Ni. The variation of γ along the series indicates a maximum around x = 0.9 which corresponds to the magnetic instability. It is worth noting that below Tc in the ferromagnetic compounds, Cmag follows a T law, characteristic of magnon dispersion.  相似文献   

10.
Fluorescence resonance energy transfer between cerium ion(III) and levofloxacin is studied in a micellar solution of cetyltrimethyl ammonium bromide. A non-fluorescent 1:2 complex was formed between excited cerium ion(III) and ground state levofloxacin. The fluorescence of cerium ion(III) is quenched by levofloxacin with the quenching in accordance with the Stern–Volmer relation. The analytical relationship was established between the ratio of the fluorescence of levofloxacin present and absent cerium ion (III) and the concentration of levofloxacin, which helped to estimate the content of levofloxacin directly.  相似文献   

11.
Field dependent specific heat measurements and a study of elastic neutron scattering experiments characterize CePd2Ga3 as a ferromagnetic Kondo compound with ordering in the basal plane belowT C 6 K. The crystal field ground state of cerium in this hexagonal compound is the |±1/2> eigenstate. In the scope of a phenomenological model, the coupling constant and the Kondo temperature have been deduced.  相似文献   

12.
Electron spin resonance (ESR) measurements of the ferromagnetic (FM) Kondo lattice system CeRuPO show a well defined ESR signal which is related to the Ce3+ magnetism. In contrast, no ESR could be observed in the antiferromagnetic (AFM) homologue CeOsPO. Additionally, we detect an ESR signal in ferromagnetic YbRh while it was absent in a number of Ce or Yb intermetallic compounds with dominant AFM exchange. Thus, the observation of an ESR signal in a Kondo lattice is neither specific to Yb nor to the proximity to a quantum critical point, but seems to be connected to the presence of FM fluctuations. These conclusions not only provide a basic concept to understand the ESR in Kondo lattice systems even well below the Kondo temperature (as observed in YbRh2Si2) but point out ESR as a prime method to investigate directly the spin dynamics of the Kondo ion.  相似文献   

13.
Recently observed tunneling spectra on clean heavy-fermion compounds show a lattice periodic Fano line shape similar to what is observed in the case of tunneling to a Kondo ion adsorbed at the surface. We show that the translation symmetry of a clean surface in the case of weakly correlated metals leads to a tunneling spectrum which shows a hybridization gap but does not have a Fano line shape. By contrast, in a strongly correlated heavy-fermion metal the heavy quasiparticle states will be broadened by interaction effects. The hybridization gap is completely filled in this way, and an ideal Fano line shape of width ~2TK results. In addition, we discuss the possible influence of the tunneling tip on the surface, in (i) leading to additional broadening of the Fano line and (ii) enhancing the hybridization locally, hence adding to the impurity type behavior. The latter effects depend on the tip-surface distance.  相似文献   

14.
We report an electron spin resonance (ESR) study on single crystals of the heavy fermion metal YbRh2Si2 which shows pronounced non-Fermi liquid behavior related to a close antiferromagnetic quantum critical point. It is shown that the observed ESR spectra can be ascribed to a bulk Yb3+ resonance. This is the first observation of ESR of the Kondo ion itself in a dense Kondo lattice system. The ESR signal occurs below the Kondo temperature (T(K)) which thus indicates the existence of large unscreened Yb3+ moments below T(K). We observe the spin dynamics as well as the static magnetic properties of the Yb3+ spins to be consistent with the results of nuclear magnetic resonance and magnetic susceptibility.  相似文献   

15.
A favored interpretation of the gamma <--> alpha phase transition in cerium postulates the transformation of the localized 4f state in gamma-Ce to a weakly correlated itinerant 4f band in alpha-Ce. However, results of high-energy neutron inelastic scattering measurements, presented here, show clearly that the magnetic susceptibility response from alpha-Ce follows the Ce3+ form factor despite the large, 30-fold, increase in its spectral width relative to that in gamma-Ce. This observation provides, for the first time, indisputable evidence for the localized character of the 4f state in the alpha phase. The present findings appear consistent with recent calculations combining dynamical mean-field theory with the local density approximation that indicate a strongly correlated 4f state in alpha-Ce. The localized 4f state is also fundamental to the Kondo volume collapse theories for the gamma <--> alpha phase transition in cerium.  相似文献   

16.
We report here clear evidence for Kondo scattering from a rare earth ion which is free from the usual complications of crystalline electric field splittings and valence fluctuations.  相似文献   

17.
We study how a finite hybridization between a narrow correlated band and a wide conduction band affects the Mott transition. At zero temperature, the hybridization is found to be a relevant perturbation, so that the Mott transition is suppressed by Kondo screening. In contrast, a first-order transition remains at finite temperature, separating a local-moment phase and a Kondo-screened phase. The first-order transition line terminates in two critical end points. Implications for experiments on f-electron materials such as the cerium alloy Ce0.8La0.1Th0.1 are discussed.  相似文献   

18.
潘栓  赵爱迪  杨金龙  侯建国 《物理》2006,35(2):87-90
报道了如何通过改变单个磁性离子的化学环境来调控其白旋性质.利用扫描隧道显微镜,对吸附于Au(111)表面的单个钴酞菁分子进行化学修饰,通过在针尖上施加一定的电压脉冲,将分子配合体外层的8个氢原子“剪裁”掉,使其与金衬底形成稳定的化学键合.在这个新的人造分子结构中,其中心钴离子的电子态在费米面上出现强烈的共振峰;通过理论的模拟和分析,发现出现这一共振峰的原因是,脱氢和与衬底的化学结合使中心钴离子自旋性质发生改变,从而导致了输运特性中近藤效应(Kondo effect)的出现.  相似文献   

19.
We emphasize, on the basis of experimental data and theoretical calculations, that the entropic stabilization of the gamma phase is the main driving force of the alpha-gamma transition of cerium in a wide temperature range below the critical point. Using a formulation of the total energy as a functional of the local density and of the f-orbital local Green's functions, we perform dynamical mean-field theory calculations within a new implementation based on the multiple linear muffin tin orbital (LMTO) method, which allows us to include semicore states. Our results are consistent with the experimental energy differences and with the qualitative picture of an entropy-driven transition, while also confirming the appearance of a stabilization energy of the alpha phase as the quasiparticle Kondo resonance develops.  相似文献   

20.
The EPR of paramagnetic impurities Gd3+ and Mn2+ was studied in nonmagnetic Kondo system La1−x CexCu6 containing in the 1.6–200 K range. The exchange interaction parameters of gadolinium and manganese ions with conduction electrons, of cerium ions with conduction electrons and with one another, the Kondo temperature of cerium ions, and the temperature behavior of cerium-ion spin-fluctuation rate have been determined. A pseudogap in the density of states at the Fermi level has been detected in the CeCu6 regular system, which is apparently due to s-f hybridization. This pseudogap can be destroyed by introducing an aluminum impurity, which induces strong conduction-electron scattering. It was also found that RKKY interaction among manganese ions in CeCu6−y Mny is considerably stronger than it is in LaCu6−y Mny, which implies enhancement of nonlocal spin susceptibility due to an f band contribution to conduction-electron states. Fiz. Tverd. Tela (St. Petersburg) 40, 593–599 (April 1998)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号