首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of normal-state resistivity rho(n) on the vortex phase diagram at low temperature T have been studied based on dc and ac complex resistivities for thick amorphous MoxSi(1-x) films. It is commonly observed irrespective of rho(n) that, in the limit T=0, the vortex-glass-transition line B(g)(T) is independent of T and extrapolates to a field below the T=0 upper critical field B(c2)(0), indicative of the quantum-vortex-liquid (QVL) phase in the regime B(g)(0)相似文献   

2.
We discuss Bose-Einstein condensation (BEC) in quasi-2D trapped gases and find that well below the transition temperature T(c) the equilibrium state is a true condensate, whereas at intermediate temperatures T相似文献   

3.
We find that in very elongated 3D trapped Bose gases, even at temperatures far below the BEC transition temperature T(c), the equilibrium state will be a 3D condensate with fluctuating phase (quasicondensate). At sufficiently low temperatures the phase fluctuations are suppressed and the quasicondensate turns into a true condensate. The presence of the phase fluctuations allows for extending thermometry of Bose-condensed gases well below those established in current experiments.  相似文献   

4.
I investigate the possibility of using Coulomb drag to detect a precursor of the predicted (but as yet not definitively observed) superfluid transition in electron-hole coupled quantum wells. The drag transresistivity rho(21) is shown to be significantly enhanced above the mean-field transition temperature T(c) and to diverge logarithmically as T-->T(+)(c), due to electron-hole pairing fluctuations which are somewhat analogous to the Maki-Thompson contribution to conductivity in metals above the superconducting T(c). The enhancement in rho(21) is estimated to be detectable at temperatures much higher than T(c).  相似文献   

5.
Muon spin rotation/relaxation measurements have been performed in the itinerant helical magnet MnSi at ambient pressure and at 8.3 kbar. We have found the following: (a) the spin-lattice relaxation rate 1/T(1) shows divergence as T1T proportional, variant (T-T(c))(beta) with the power beta larger than 1 near T(c); (b) 1/T(1) is strongly reduced in an applied external field B(L) and the divergent behavior near T(c) is completely suppressed at B(L)> or =4000 G. We discuss that (a) is consistent with the self-consistent renormalization theory and reflects a departure from "mean-field" behavior, while (b) indicates selective suppression of spin fluctuations of the q=0 component by B(L).  相似文献   

6.
《Nuclear Physics A》1988,484(2):295-314
The triggering of the liquid-gas phase transition in hot nuclear matter by quantum and statistical fluctuations is studied in a microscopic approach to nucleation which is a fluid-dynamical version of the imaginary-time dependent mean-field theory at finite temperature. It is found that quantum tunnelling processes are only important below T = 1 MeV.  相似文献   

7.
8.
A qualitative analysis is made of the static and dynamic behavior of a one-dimensional classical electron gas in a periodic potential in the framework of a mean-field kinetic theory. The mean-field equations have been formally solved elsewhere in terms of the trajectories of one electron in the mean-field equilibrium potential, which determines the local electronic density. Taking advantage of the relative simplicity of the mean-field expressions in one dimension, we study the effects of the temperature upon the local electronic density, the static structure factor, and the spectrum of the fluctuations in the long-wavelength limit. At high temperatures, the system tends to behave like a homogeneous electron gas; however, the collective plasmon mode at zero wavenumber is damped and shifted below the plasma frequency. At low temperatures, the system behaves as an ensemble of independent electrons strongly localized in the neighborhood of the fixed ions that create the periodic potential; the plasmon mode then vanishes. We consider the physical relevance of these predictions. They turn out to be quite reasonable, despite the failure of meanfield theory to predict the phase of the model.  相似文献   

9.
A controversial issue of the driving force for the phase transition of the one-dimensional (1D) metallic In wires on Si(111) is studied by low-temperature scanning tunneling microscopy and spectroscopy. The energy gap opening and the longitudinal charge ordering through charge transfer at the Fermi level are unambiguously observed. The vacancy defects induce a local charge ordering decoupled from a lattice distortion above T(c), and pin the phase of charge order below T(c). All these results below and above T(c) including the detailed features such as local fluctuations strongly support the 1D charge-density-wave mechanism for the phase transition.  相似文献   

10.
We find that in the ultraclean heavy-fermion superconductor URu(2)Si(2) (T_{c0}=1.45 K) a distinct flux line lattice melting transition with outstanding characters occurs well below the mean-field upper critical fields. We show that a very small number of carriers with heavy mass in this system results in exceptionally large thermal fluctuations even at sub-Kelvin temperatures, which are witnessed by a sizable region of the flux line liquid phase. The uniqueness is further highlighted by an enhancement of the quasiparticle mean free path below the melting transition, implying a possible formation of a quasiparticle Bloch state in the periodic flux line lattice.  相似文献   

11.
We argue that in a fluid, or magnet, confined by adsorbing walls which favor liquid, or the (+) phase, the solvation (Casimir) force in the vicinity of the critical point is strongly influenced by capillary condensation which occurs below the bulk critical temperature T(c). At T slightly below and above T(c), a small bulk field h<0, which favors gas, or the (-) phase, leads to residual condensation and a solvation force which is much more attractive (at the same large wall separation) than that found exactly at the critical point. Our predictions are supported by results obtained from density-matrix renormalization-group calculations in a two-dimensional Ising strip subject to identical surface fields.  相似文献   

12.
The magnetic susceptibility and Edwards-Anderson order parameter q of the spin-glass-like (SGL) phase of the double-exchange model are evaluated in the weak-coupling or RKKY limit. Dynamical mean-field theory is used to show that q = M(T/T(SGL))2, where M is the classical Brillouin function and T(SGL) is the SGL transition temperature. The correlation length of the SGL phase is determined by a correlation parameter Q that maximizes T(SGL) and minimizes the free energy. The magnetic susceptibility has a cusp at T(SGL) and reaches a nonzero value as T --> 0.  相似文献   

13.
We present a numerically exact solution for the BCS Hamiltonian at any temperature, including the degrees of freedom associated with classical phase, as well as amplitude fluctuations via a Monte Carlo integration. This allows for an investigation over the whole range of couplings: from weak attraction, as in the well-known BCS limit, to the mainly unexplored strong-coupling regime of pronounced phase fluctuations. In the latter, two characteristic temperatures T(*) and T(c), associated with short- and long-range ordering, respectively, can be identified in a mean-field-motivated Hamiltonian. T(*) at the same time corresponds to the opening of a gap in the excitation spectrum. In addition to introducing a novel procedure to study strongly coupled d-wave superconductors, our results indicate that classical phase fluctuations are not sufficient to explain the pseudogap features of high-temperature superconductors.  相似文献   

14.
We present measurements of ac complex resistivity, as well as dc resistivity, for a thick amorphous MoxSi1-x film at low temperatures ( T>0.04 K) in various constant fields B. We find that the vortex glass transition (VGT) persists down to T approximately 0.04Tc0 up to B approximately 0.9Bc2(0), where Tc0 and Bc2(0) are the mean-field transition temperature and upper critical field at T = 0, respectively. In the limit T-->0, the VGT line Bg(T) extrapolates to a field below Bc2(0), while the dc resistivity rho(T) tends to the finite nonzero value in fields just above Bg(0). These results indicate the presence of a metallic quantum vortex liquid at T = 0 in the regime Bg(0)相似文献   

15.
For systems that exhibit a second-order phase transition with a spontaneously broken continuous O(N) symmetry at low temperatures, we give a criterion for judging at which temperature T(K) long-range directional fluctuations of the order field destroy the order when approaching the critical temperature from below. The temperature T(K) lies always significantly below the famous Ginzburg temperature T(G) at which size fluctuations of finite range become important.  相似文献   

16.
We report Sb-NQR results which evidence a heavy-fermion (HF) behavior and an unconventional superconducting (SC) property in Pr(Os4Sb12 with T(c)=1.85 K. The temperature (T) dependence of nuclear-spin-lattice-relaxation rate, 1/T(1), and NQR frequency unravel a low-lying crystal-electric-field splitting below T0 approximately 10 K, associated with Pr3+(4f(2))-derived ground state. In the SC state, 1/T(1) shows neither a coherence peak just below T(c) K nor a T3-like power-law behavior observed for anisotropic HF superconductors with the line-node gap. The isotropic energy gap with its size Delta/k(B)=4.8 K seems to open up across T(c) below T(*) approximately 2.3 K. It is surprising that Pr(Os4Sb12 looks like an isotropic HF superconductor-it may indeed argue for Cooper pairing via quadrupolar fluctuations.  相似文献   

17.
We present highly sensitive Hall effect measurements of the heavy fermion compound CeCoIn5 down to temperatures of 55 mK. A pronounced dip in the differential Hall coefficient | partial differential rho(xy)/ partial differential H| at low temperature and above the upper critical field of superconductivity, H(c2), is attributed to critical spin fluctuations associated with the departure from Landau Fermi liquid behavior. This identification is strongly supported by a systematic suppression of this feature at elevated pressures. The resulting crossover line in the field-temperature phase diagram favors a field induced quantum critical point at mu(0)H(qc) approximately 4.1 T below H(c2)(T=0) suggesting related, yet separate, critical fields.  相似文献   

18.
We study Heisenberg antiferromagnets with nearest- (J1) and third- (J3) neighbor exchange on the square lattice. In the limit of spin S-->infinity, there is a zero temperature (T) Lifshitz point at J(3)=1/4J(1), with long-range spiral spin order at T=0 for J3>1/4J(1). We present classical Monte Carlo simulations and a theory for T>0 crossovers near the Lifshitz point: spin rotation symmetry is restored at any T>0, but there is a broken lattice reflection symmetry for 0< or =T相似文献   

19.
Muon spin rotation ( &mgr;SR) measurements of the temperature dependence of the &mgr;(+) Knight shift in single crystals of U0. 965Th0.035Be13 have been used to study the static spin susceptibility chi(s) below the transition temperatures T(c1) and T(c2). While an abrupt reduction of chi(s) with decreasing temperature is observed below T(c1), chi(s) does not change below T(c2) and remains at a value below the normal-state susceptibility chi(n). In the normal state we find an anomalous anisotropic temperature dependence of the transferred hyperfine coupling between the &mgr;(+) spin and the U 5f electrons.  相似文献   

20.
Thermodynamic quantities are derived for superconducting and pseudogap regimes by taking into account both amplitude and phase fluctuations of the pairing field. In the normal (pseudogap) state of the underdoped cuprates, two domains have to be distinguished: near the superconducting region, phase correlations are important up to temperature T(phi). Above T(phi), the pseudogap region is determined only by amplitudes, and phases are uncorrelated. Our calculations show excellent quantitative agreement with specific heat and magnetic susceptibility experiments on cuprates. We find that the mean field temperature T0 has a similar doping dependence as the pseudogap temperature T(*), whereas the pseudogap energy scale is given by the average amplitude above T(c).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号