首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
ABSTRACT

The atmospheric oxidation mechanisms of 1- and 2-propenol initiated by OH radical have been theoretically investigated at the CCSD(T)//BH&;HLYP/6-311?+?+G(d,p) level of theory. Conventional transition state theory was employed to predict the rate constants for the initial reaction channels. The calculations clearly indicate that OH-addition channels contribute maximum to the total reaction, both for 1- and 2-propenol, while H-abstraction channels can be neglected at the temperature range of 220–520?K. The calculated total rate constants at 298?K are 1.66?×?10?11 and 7.69?×?10?12 cm3?molecule?1?s?1 respectively for 1- and 2-propenol, which are in reasonable agreement with the experimental values of similar systems (vinyl ethers?+?OH reactions). The deduced Arrhenius expressions are k(OH?+?1-propenol)?=?1.43?×?10?12 exp[(743.7?K)/T] and k(OH?+?2-propenol)?=?2.86?×?10?12 exp[(310.5?K)/T] cm3?molecule?1?s?1. Under atmospheric condition, the OH-addition intermediates (CH3C?HCH(OH)2, CH3CH(OH)C?H(OH), CH3CH(OH)2?CH2, CH3?C(OH)CH2(OH)) are likely to react rapidly with O2, the theoretically identified major products for 1-propenol are HCOOH, CH3CHO and CH3CH(OH)CHO, and the dominant products for 2-propenol are CH3COOH, HCHO and CH3COCH2OH, both companied with the regeneration of OH and HO2 radicals (crucial reactive radicals in the atmosphere).  相似文献   

2.
On the basis of symmetry methods, a rigorous model is, for the first time, obtained for describing the spectrum of the ethanol molecule CH3CH2OH in a given vibronic state with allowance for the simultaneous torsional motion of the hydroxyl group OH and the methyl group CH3.  相似文献   

3.
The rotational spectrum of (CH3OH)2 has been observed in the region 4-22 GHz with pulsed-beam Fabry-Perot cavity Fourier-transform microwave spectrometers at NIST and at the University of Kiel. Each a-type R(J), Ka = 0 transition is split into 15 states by tunneling motions for (CH3OH)2, (13CH3OH)2, (CH3OD)2, (CD3OH)2, and (CD3OH)2. The preliminary analysis of the methyl internal rotation presented here was guided by the previously developed multidimensional tunneling theory which predicts 16 tunneling components for each R(J) transition from 25 distinct tunneling motions. Several isotopically mixed dimers of methanol have also been measured, namely 13CH3OH, CH3OD, CD3OH, and CD3OD bound to 12CH3OH. Since the hydrogen bond interchange motion (which converts a donor into an acceptor) would produce a new and less favorable conformation from an energy viewpoint, it does not occur and only 10 tunneling components are observed for these mixed dimers. The structure of the complex is similar to that of water dimer with a hydrogen bond distance of 2.035 Å and a tilt of the acceptor methanol of 84° from the O-H-O axis. The effective barrier to internal rotation for the donor methyl group of (CH3OH)2 is ν3 = 183.0 cm−1 and is one-half of the value for the methanol monomer (370 cm−1), while the barrier to internal rotation of the acceptor methyl group is 120 cm−1.  相似文献   

4.
The technique of optical pumping in polar molecules is the most efficient for Far-Infrared (FIR) laser generation, providing also a versatile and powerful tool for molecular spectroscopy in this spectral region. Methanol (CH3OH) and its isotopic varieties are the best media for optically pumped FIR laser, with over thousand lines observed, and the most widely used for investigations and applications. In this sense, it is important organize and make available catalogues of FIR laser lines as complete as possible. Since the last critical reviews of 1984 [1] on methanol and its isotopic varieties [2,3,4], over hundred papers have been published dealing with hundreds of new FIR laser lines. In 1992 a review of FIR laser lines from CH3OH was presented [5]. In this communication we extend this work to the other methanol isotopes, namely CH3OD, CD3OH, CD3OD,13CH3OH,13CD3OH,13CD3OD, CH3 18OH, CH2DOH, CHD2OH and CH2DOD.Work supported by FAPESP, CNPq, FAEP-Brasil, and CNR-Italia  相似文献   

5.
DSC method has been used to establish a solid state polymorphism of four dimethyl butanols having CH3 side groups: 2,2-dimethyl-1-butanol [CH3CH2C(CH3)2CH2OH)], 3,3-dimethyl-1-butanol [(CH3)3CCH2CH2OH], 3,3-dimethyl-2-butanol [(CH3)3CCH(OH)CH3] and 2,3-dimethyl-2-butanol [(CH3)2CHCOH(CH3)2]. Three isomers appear to be glass formers. Glass of liquid phase has been observed for 3,3-DM-1-B while glass of plastic phase for 2,2-DM-1-B and 3,3-DM-2-B. For 2,3-DM-2-B on cooling only crystallization has been found. Influence of location of the OH group in molecule on polymorphism is discussed. IR-spectra, measured in the liquid phase, have revealed hydrogen bonds in all isomers.  相似文献   

6.
甲醇与氟原子之间的抽氢反应可以生成HF和CH3O、CH2OH自由基等产物. 该反应在环境化学、燃烧化学、辐射化学和星际化学中都非常重要. 基于之前构建的全维高精度势能面,本文采用准经典轨线方法研究了该典型反应的动力学. 特别是使用正则模式分析方法确定了多原子产物CH3O和CH2OH的振动态分布. 研究发现,当反应物处于振转基态时,CH3O和CH2OH主要分布在基态. 当反应物CH3OH的OH伸缩模式激发为第一激发态时,产物CH2OH的OH伸缩模式、扭转模式、H2CO 面外弯曲模式及其组合会被有效激发. 在两条通道中,可用能量大部分都流入HF的振动能和产物的平动能,而自由基产物CH3O或CH2OH只得到非常少的能量,与实验结果一致,这也表明了自由基的旁观者性质.  相似文献   

7.
We have re-investigated the 12CH3OH and the 13CH3OH molecules as optically pumped far-infrared laser sources. We have used our new waveguide pulsed-high-peak-power CO2 laser for pumping, finding 20 new far-infrared laser lines emitted by 12CH3OH and seven emitted by 13CH3OH. For each line we report wavelength, pump offset from the center of the exciting CO2 line, relative polarization, optimum operating pressure and intensity. The LaseRitz program was able to assign one of the new laser systems of 12CH3OH, involving two new far-infrared laser lines.PACS 42.55.Lt; 42.62.Fi  相似文献   

8.
The formation mechanism of CH3O by the adsorption and decomposition of CH3OH on clean and oxygen-precovered Cu2O(1 1 1) surface has been investigated with density functional theory method together with the periodic slab models. Two possible formation pathways of CH3O by CH3OH decomposition on oxygen-precovered (Opre) Cu2O(1 1 1) surface were proposed and discussed. One is the O-H bond-cleavage of CH3OH with H migration to Opre to form CH3O; the other is the C-O bond-scission of CH3OH with CH3 migration to Opre leading to CH3Opre. The calculated results show that the O-H bond-breaking path has the lowest activation barrier 26.8 kJ mol−1, the presence of oxygen-precovered on Cu2O(1 1 1) surface exhibits a high surface reactivity toward the formation of CH3O by the O-H bond-cleavage of CH3OH, and reduce the activation barrier of O-H bond-cleavage. The C-O bond-breaking path was inhibited by dynamics, suggesting that the O atom of CH3O is not from the oxygen-precovered, but comes from the O of CH3OH. Meanwhile, the calculated results give a clear illustration about the formation mechanism of CH3O in the presence of oxygen and the role of oxygen at the microscopic level.  相似文献   

9.
In the present study, the adsorption behaviour of methanol (CH3OH) and ethanol (C2H5OH) molecules over heterofullerene C59B surface is studied by density functional theory calculations. This heterofullerene is obtained from C60 by substituting a carbon atom with a boron atom and relaxing self-consistently the structure to the local minimum. The adsorption of CH3OH and C2H5OH on the C59B is exothermic and the relaxed geometries are stable. The CH3OH and C2H5OH adsorption can also induce a change in the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy gap of the nanocage. The dehydrogenation pathways of CH3OH and C2H5OH via O–H and C–H bonds scission are also examined. The results indicate that O–H bond scission is the most favourable pathway on the C59B surface.  相似文献   

10.
The spectrum of a partially oriented sample of ethanol has been analysed by making use of the simpler spectra obtained from the species CD3CH2OH and CH3CD2OH, together with 1H?{2H} double resonance. With p-ethoxy-benzylidene-p-n-butylaniline (EBBA) as the nematic solvent the dipolar couplings of CH3 and CH2 protons with the OH proton can be observed, and their magnitudes are compared with values calculated assuming different models for C-O-H internal rotation. Information on the quadrupole coupling constant tensor elements for CD3 and CD2 deuterium nuclei is obtained.  相似文献   

11.
ABSTRACT

A six-degrees-of-freedom, time-dependent quantum dynamics calculation is employed to study the integral cross sections, full-dimensional cumulative reaction probabilities and full-dimensional rate constants for the isotopic reactions of the OD and OH with CH3 reactions. The full-dimensional cumulative reaction probabilities and full-dimensional rate constants are obtained using the energy and J-K shifting approaches based on the six-degrees-of-freedom calculations. The comparison of integral cross sections shows that the OD?+?CH3 reaction has a larger energy threshold and a smaller tunnelling effect than the OH?+?CH3 reaction. The corrected rate constants using the experimental zero-point energy have a very good agreement with the experimental results. The comparison of the rate constants shows that the OD?+?CH3 has smaller rate constants than the OH?+?CH3 reaction, which indicates a smaller reactivity due to the isotope substitution.  相似文献   

12.
Infrared studies of the products of the 1470 Å photolysis of normal and isotopically substituted methanol isolated in argon and nitrogen matrices at 14°K have provided evidence for the stabilization of a significant yield of CH2OH. Assuming a slightly nonplanar structure for the molecule, it has been possible to obtain an approximate valence-force potential field which provides a reasonable fit to virtually all of the data. The CO bond of CH2OH is slightly stronger than that of methanol, and the torsional barrier is significantly greater, in accord with previous electron spin resonance observations. There is no evidence for the production or stabilization of CH3O in the matrix. CH2OH undergoes photodecomposition upon exposure to radiation in the 2300–2800 Å spectral region, leading to a growth in the HCO absorptions.  相似文献   

13.
本文利用266 nm波长的激光及程序升温脱附的方法研究了甲醇在ZnO(0001)表面的光催化反应. TPD结果显示部分的CH3OH以分子的形式吸附在ZnO(0001)表面,而另外一部分在表面发生了解离. 实验过程中探测到H2,CH3·,H2O,CO,CH2O,CO2和CH3OH这些热反应产物. 紫外激光照射实验结果表明光照可以促进CH3OH/CH3O·解离形成CH2O,在程序升温或光照的过程中它又可以转变为HCOO-. CH2OHZn与OHad反应在Zn位点上形成H2O分子. 升温或光照都能促进CH3O·转变为CH3·. 该研究对CH3OH在ZnO(0001)表面的光催化反应机理提供了一个新的见解.  相似文献   

14.
Temperature-programmed reaction/desorption, X-ray photoelectron spectroscopy, and reflection-absorption infrared spectroscopy have been employed to investigate the reactions of ICH2CH2OH on Cu(1 0 0) under ultrahigh-vacuum conditions. ICH2CH2OH can dissociate on Cu(1 0 0) at 100 K, forming a -CH2CH2OH surface intermediate. Density functional theory calculations predict that the -CH2CH2OH is most probably adsorbed on atop site. -CH2CH2OH on Cu(1 0 0) further decomposes to yield C2H4 below 270 K. No evidence shows the formation of -CH2CH2O- intermediate in the reactions of ICH2CH2OH on Cu(1 0 0) in contrast to the decomposition of BrCH2CH2OH on Cu(1 0 0) and ICH2CH2OH on Ag(1 1 1) and Ag(1 1 0), exhibiting the effects of carbon-halogen bonds and metal surfaces.  相似文献   

15.
Electron energy loss Spectroscopy (ISEELS) under dipole scattering conditions is used to obtain the carbon and oxygen K-shell oscillator strength spectra of methanol (CH3OH), propanol (CH3CH2CH2OH), propenol (CH2=CHCH2OH), propargyl alcohol (HC≡CCH2OH), propanoic acid (CH3CH2COOH), acrylic acid (CH2=CHCOOH) and propiolic acid (HC≡CCOOH). A detailed interpretation of these spectra is presented, along with a comparison with the NEXAFS spectra of multilayers of these molecules adsorbed on a Si(111) surface, as recently reported by Outka et al. (Surf. Sci., 185 (1987) 53). Good agreement is found between the multilayer NEXAFS and the gas phase ISEEL spectra, except for the carboxylic acids which differ dramatically in the discrete portion of the O1s spectrum. Possible origins for this difference are discussed. The C1s and O1s spectra of methyl formate (HCOOCH3) are also reported and interpreted in comparison with the spectra of formic acid and methanol.  相似文献   

16.
A study has been made of vibrational properties in ethylene glycol (EG; H(OCH2CH2)OH) and EG monomethyl ether (EGmE; CH3(OCH2CH2)OH) in solution together with poly(ethylene oxide) (PEO; H(OCH2CH2)n,OH) at different concentrations, performed by Fourier transform infrared absorbance (FT-IR) spectroscopy. The results ae compared with previous viscometry and photon correlation spectroscopy (PCS) studies, using EG dimethyl ether (EGdE; CH3(OCH2CH2)OCH3) as solvent as well. These homologous systems differ from each other in the number of OH end groups, in particular two for EG, one for EgmE and zero for EGdE. Combining analysis of the vibrational and transport properties of EG, EGmE and EGdE in solution with PEO over a wide range of concentration made it possible to check the quality (good theta or poor) of these three different solvents and the role played by the hydrogen bond in the various solute-solvent interaction mechanisms, resulting in the well known de Gennes scaling law.  相似文献   

17.
Yuhai Hu 《Surface science》2007,601(12):2467-2472
The interaction between NO and CH3OH on the surface of stepped Pt(3 3 2) was investigated using Fourier transform infra red reflection-absorption spectroscopy (FTIR-RAS) and thermal desorption spectroscopy (TDS). At 90 K, pre-dosed CH3OH molecules preferentially adsorb on step sites, suppressing the adsorption of NO molecules on the same sites. However, due to a much stronger interaction with Pt, at 150 K and higher, the adsorption of NO molecules on step sites is restored, giving rise to peaks closely resembling those of NO molecules adsorbed on clean Pt(3 3 2) surface. Adsorbed CH3OH is very reactive on this surface, and is readily oxidized to formate in the presence of O2, even at 150 K. In contrast, reactions between CH3OH and co-adsorbed NO are slight to non-existent. There are no new peaks in association with intermediates resulting from CH3OH-NO interactions. It is concluded that the reduction of NO with CH3OH on Pt(3 3 2) does not proceed through a mechanism of forming intermediates.  相似文献   

18.
H+CH3OH作为典型的多通道反应,在燃烧和星际中起着重要的作用. 本文基于在UCCSD(T)-F12a/AVTZ水平上计算的大量数据点,构建了该体系的全维精确势能面,并基于该势能面,研究了不同产物通道的模式特异动力学. 结果表明,O-H 伸缩、沿C-O轴的扭转以及C$-$H伸缩等模式的振动激发对H2+CH3O、H2+CH2OH、H2O+CH3和H+CH3OH四个产物通道有着不同的影响. 该研究有助于理解具有多个产物通道的复杂反应的模式特异动力学,进而帮助控制其竞争反应.  相似文献   

19.
《Infrared physics》1989,29(6):1013-1019
We have studied self-broadening and foreign gas broadening of the ground state J = 31→J = 32 transition of CH3F using a coincidence with the 184.3 μm emission from an optically pumped CH2F2 laser. Experiments have been carried out with polar and non-polar species as well as the noble gases.This transition is in the region where the classical rotation period is of the same order as the duration of a collision. The measurements indicate an anomalously low value of 7.0 MHz/Torr for the self-broadening coefficient of CH3F and an unusually large value for the CH3OH broadening coefficient. The latter is believed to be due to the presence of a low energy OH torsional model in CH3OH.  相似文献   

20.
Methanol (CH3OH) is considered today one of the most important active media for the generation of laser radiation in the far-infrared (FIR) spectral region. Together with ten of its other isotopic species, it is responsible for the major part of the laser lines generated by the optical pumping technique. Due to the extreme importance of those molecules as laser generators, we understood that there was a necessity of a comprehensive work which would include as much pratical information as possible about each line.Chang et al(1) early recognized methanol as a source of strong FIR laser lines. Since then, more than 100 papers were published containing information about new laser emission. Recently, Moruzzi et al(114) presented a review of 575 lines produced by12CH3OH. In the present paper, we have extended the review to the various isotopic modifications of this molecule (namely13CH3OH, CD3OH,13CD3OH, CD3OD,13CD3OD, CH3OD, CH 3 18 OH, CH2DOH, CH2DOD and CHD2OH), a total of nearly 2000 lines with wavelengths ranging from 19µm to 3030µm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号