首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
金属材料脆性断裂机理的实验研究   总被引:1,自引:0,他引:1  
材料的脆性断裂有许多准则和模型,但对脆断机理和变化规律缺乏合理的描述,给工程应用带来不便。本文对典型脆性材料球墨铸铁、灰铸铁分别进行了拉扭双轴断裂实验和常规拉伸、扭转破坏实验;对韧性金属材料合金钢进行了单轴拉伸颈缩破坏实验。通过上述实验分析了脆性材料和韧性材料发生脆性断裂的机理特征并选择应力三维度作为应力状态参数描述危险点的应力状态,同时考察了脆性材料和韧性材料发生脆性断裂的主导因素。结果表明:韧性材料45#钢和14CrNiMoV合金钢在颈缩断面心部应力三维度值较大时发生脆性拉断,而在颈缩断面边缘处应力三维度值较小时发生剪断;脆性材料球墨铸铁在应力三维度值为0.0~0.33之间变化时均发生脆性断裂;灰铸铁在应力三维度值大于0.0时发生脆性拉断,而在应力三维度值小于0.0时发生剪断。因此可以认为,材料的细观组织结构和危险点应力状态是影响断裂机理及变化规律的主要因素。对于同种材料,随着应力三维度代数值从小向大变化材料的断裂机制由塑性剪切断裂逐渐转变为脆性断裂。本文通过对几种材料的脆性断裂危险点和断裂方向的研究给出了脆断宏观破坏条件。  相似文献   

2.
本文针对9种金属材料完成了具有不同约束程度的10类试样的延性断裂试验, 获得了发生拉、压、扭和裂尖断裂等破坏形式构型试样的载荷-位移试验关系; 基于圆棒漏斗试样拉伸试验所得直至破坏的载荷-位移曲线, 采用有限元辅助试验(finite-element-analysis aided testing, FAT)方法得到了9种材料直至破坏的全程等效应力-应变曲线, 以此作为材料本构关系通过有限元分析获得了各类试样直至临界破坏的载荷-位移关系模拟. 载荷-位移关系模拟结果与试验结果有较好的一致性, 表明用于解决试样颈缩问题的FAT方法所获得的全程材料本构关系针对各向同性材料具有真实性和普适性. 对应9种材料、10类试样的36 个载荷-位移临界断裂点, 通过有限元分析获得了对应的材料临界断裂应力、应变与临界应力三轴度, 研究表明, 第一主应力在延性变形过程中为主控断裂的主导参量; 通过研究光滑、缺口、裂纹等构型试样的断裂状态, 提出了$-1$至3范围的应力三轴度下由第一主应力主控的统一塑性临界断裂准则.   相似文献   

3.
An extension of the Gurson model that incorporates damage development in shear is used to simulate the tension–torsion test fracture data presented in Faleskog and Barsoum (2013) (Part I) for two steels, Weldox 420 and 960. Two parameters characterize damage in the constitutive model: the effective void volume fraction and a shear damage coefficient. For each of the steels, the initial effective void volume fraction is calibrated against data for fracture of notched round tensile bars and the shear damage coefficient is calibrated against fracture in shear. The calibrated constitutive model reproduces the full range of data in the tension–torsion tests thereby providing a convincing demonstration of the effectiveness of the extended Gurson model. The model reinforces the experiments by highlighting that for ductile alloys the effective plastic strain at fracture cannot be based solely on stress triaxiality. For nominally isotropic alloys, a ductile fracture criterion is proposed for engineering purposes that depends on stress triaxiality and a second stress invariant that discriminates between axisymmetric stressing and shear dominated stressing.  相似文献   

4.
A flat-nosed cylinder moving at a sufficiently high impact velocity in the classical Taylor test will always fracture. In this paper, fracture phenomena and fracture mechanisms in the Taylor test are investigated numerically based on a recently developed ductile fracture locus with the cut-off value for the negative stress triaxiality at −1/3. The impact velocity of the projectile ranges from 240 m/s to 600 m/s. The lower velocity is applied to a less ductile 2024-T351 aluminum alloy cylinder while the higher velocity is introduced for more ductile Weldox 460 E steel. Three distinct fracture modes are recreated numerically: the confined fracture inside the cylinder, the shear cracking on the lateral surface, and the petalling, all of which are consistent with experimental results presented in the open literature. It is found that a more ductile cylinder tends to fail by petalling while a less ductile one by shear cracking. Confined fracture is a common failure mode for both materials, which occurs in a wide range of the impact velocity. The ductile fracture criterion with the cut-off value predicts realistic fracture patterns for short cylinders deforming predominantly under compression.  相似文献   

5.
本文对含不同形状孔洞的幂硬化材料的圆柱体胞模型,运用控制宏观应力三维工的方法进行了有限元分析。计算结果表明:1.孔洞初始形状,应力三维度对孔洞的长大有重要影响;2.Guson模型对孔洞长大规律的描述是不准确的,不准确度与孔洞初始形状,应力三维度有关,修正后的Gurson模型与有限元结果吻合较好;3.在低应力三维度区,孔洞以及形状改变为主,在高应力三维度区,孔洞以扩张为主;  相似文献   

6.
IntroductionTheductile brittletransition (DBT )ofsteelalloysisinfluencedbythematerialmicrostructureandtestingtemperature[1].Availablereferencesrangingfromanalyticalapproachtoempiricaltestsaretoonumeroustolist.Mostofthesemodesaredeterministic ,whichdidnottaketherandomnessoftheparametersandman_madeerrorintoconsideration .Thebasicproposesofthispaperistounderstandthetransitionbyanewrandom_fuzzymodel.Theductile brittletransitioninvolvestheductilefracture ,brittlefractureandthetransition .Inacerta…  相似文献   

7.
In this contribution,the microscopic fracture mechanism and extension criterion for mixed type crack in ductile material under plane mixed mode loading are investigated in details.A universal extension...  相似文献   

8.
The workability diagram is often used for ductile fracture predictions in metal forming processes. Its determination requires the measurement of the strain to fracture in several tests in which the triaxiality ratio is supposed to be known and fixed throughout the process of deformation. One of such tests is the uniaxial tension test. In practice, however, it is very difficult (or even impossible) to keep the triaxiality ratio fixed in this test because of necking. It is shown in the present paper that the uniaxial tension test can be replaced with the collar test for obtaining a point of the workability diagram when the fracture criterion based on an average value of the triaxiality ratio is adopted. It is also shown that the collar test provides a more accurate prediction of the strain to fracture. The test carries out at quasi-static strain rates.  相似文献   

9.
利用损伤函数概念,建立了一个普遍形式的局部断裂准则。该准则考虑了局掊应力,应变和损伤历史对断裂的影响,根据损伤力学理选取了一个新的连续损伤函数,从而导出一个新的连续损伤断裂准则。新的临界断裂参数WDC,具有明显的物理意义,且易通过试验测得,是一个不依赖于应力状态的材料九。文中还从细观力学理论和有关的试验资料出发,选取了相应的损伤函数,再现了前人的细观力学准则和经验准则。  相似文献   

10.
用碳化硅强化金属基复合材料制作的不同切口的拉伸试样进行了拉伸试验并使用三维电子扫描显微镜对拉伸延性断面进行了微小空穴的三维形状测试,分析了在不同应力三维度下空穴聚合时空穴几何形状的变化,为准确模拟金属基复合材料在多向外载荷下的损伤过程,判断延性损伤机理提供了科学依据。  相似文献   

11.
采用损伤力学方法研究了低合金结构钢及其焊缝热影响区近缝粗晶区的韧性损伤演化行为。从不可逆热力学出发,建立了一般韧性损伤模型。然后用一种新的交流电住损伤测量系统,测得了该钢及其模拟粗晶区的韧性损伤演化规律,得出了相应的损伤演化方程。讨论了应力三轴度对损伤演化和破坏的影响。结果表明,粗晶区及其母材的损伤分别遵循非线性和线性规律;前者的损伤生长速度远高于后者,但其临界损伤值和断裂应变远低于后者。  相似文献   

12.
The workability diagram is often used for predicting ductile fracture in metal forming processes. The shape of this diagram is usually determined experimentally by means of several tests. These tests should provide the strain to fracture at different values of the stress triaxiality. For ductile materials, it is difficult to get the shape of the diagram at small (algebraically) values of the stress triaxiality and it is not necessary for many applications. However, for low ductility metals, such as titanium alloys, it is important to propose and carry out tests in which the stress triaxiality is much smaller than in typical tests used to determine the workability diagram. Such a test is proposed and carried out in the present paper. Then, several standard upsetting tests are performed to determine the workability diagram of Ti-6Al-4V in a wide range of the stress triaxiality. The workability diagram is converted into the strain based formability diagram using a theoretical method available in the literature.  相似文献   

13.
The GTN model proposed by Gurson, Tvergaard and Needleman has been widely applied to predict ductile fracture. However, the evaluation of the GTN model under high stress triaxiality has only been reported in a few studies. In this paper, a series of tensile tests on round notched specimens were performed to evaluate the applicability of the GTN model parameters under high stress triaxiality. The evaluation was carried out by comparing the predicted load-displacement curves with experimental results. It was observed the GTN model parameters only depend on the material except the critical void volume fraction. The influence of stress triaxiality on the critical void volume fraction was discussed. A further discussion about the construction of a new void coalescence criterion for the GTN model was also presented in this paper.  相似文献   

14.
This paper introduces a double shear axisymmetric specimen (Shear Compression Disk) and the methodology to extract flow and fracture properties of ductile materials, under various stress triaxiality levels. A thorough numerical investigation of the experimental set-up is performed, which reveals that the stresses are quite uniformly distributed in the gauge section during all the stages of the test. The attainable level of stress triaxiality (with pressures of up to 1.9 GPa) ranges from −0.1 to 1, which can be adjusted by a proper choice of geometrical parameters of the specimen. The methodology is implemented to quasi-static experiments on 4340 Steel and Aluminum 7075-T651 specimens. The flow properties are compared to those obtained by upsetting cylinders and show a very good agreement. For these materials it is observed that, contrary to the fracture strain, the flow properties are quite insensitive to the level of stress triaxiality. The fracture strain of the aluminum alloy increases with triaxiality and may be fitted with an exponential polynomial of the type suggested by [27]. These examples demonstrate the potential of the new specimen to obtain flow and fracture properties of ductile materials under controlled triaxiality.  相似文献   

15.
Nonlinear dynamic finite element analysis (FEA) is conducted to simulate the fracture of unnotched Charpy specimens of steel under pendulum impact loading by a dedicated, oversized and nonstandard Bulk Fracture Charpy Machine (BFCM). The impact energy needed to fracture an unnotched Charpy specimen in a BFCM test can be two orders of magnitude higher than the typical impact energy of a Charpy V-notch specimen. To predict material failure, a phenomenological, stress triaxiality dependent fracture initiation criterion and a fracture evolution law in the form of strain softening are incorporated in the constitutive relations. The BFCM impact energy results obtained from the FEA simulations compare favorably with the corresponding experimental data. In particular, the FEA predicts accurately the correlations of the BFCM impact energy with such factors as specimen geometry, impactor tup width and material type. The analyses show that a specimen’s progressive deterioration through the thickness dimension displays a range of shear to ductile fracture modes, demonstrating the necessity of applying a stress state dependent fracture initiation criterion. Modeling the strain softening behavior helps to capture the residual load carrying capability of a ductile metal or alloy beyond the onset of damage. The total impact energy can be significantly under predicted if a softening branch is not included in the stress-strain curve. This research supports a study of the puncture failure of railroad tank cars under dynamic impact loading. Applications of the presented fracture model in failure analyses of other structures are further discussed.  相似文献   

16.
30CrMnSiNi2A钢是一种在军工领域应用广泛的低合金高强度钢。针对结构完整性的评估问题,采用试验和数值计算结合的方法研究了30CrMnSiNi2A钢的韧性断裂特性。对光滑圆棒试件在不同温度下进行准静态和动态拉伸试验,并通过有限元迭代方法标定了材料的Johnson-Cook动态本构模型参数,分析了温度和应变率对30CrMnSiNi2A钢断裂行为的影响。开展了缺口圆棒拉伸、缺口平板剪切和圆柱压缩试验,计算了各试件对应的平均应力三轴度和断裂应变,给出了应力三轴度在?1/3~1.5区间内的断裂应变变化曲线,分别确定了Johnson-Cook和Bao-Wierzbicki失效模型参数。研究表明,30CrMnSiNi2A钢的断裂应变与应力状态密切相关,且在不同的应力三轴度区间内曲线单调性差异较大,Bao-Wierzbicki失效模型较好地描述了这种钢在不同应力状态下的断裂特性。  相似文献   

17.
Numerous criteria have been developed for ductile fracture (DF) prediction in metal plastic deformation. Finding a way to select these DF criteria (DFCs) and identify their applicability and reliability, however, is a non-trivial issue that still needs to be addressed in greater depth. In this study, several criteria under the categories of ‘uncoupled damage criterion’ and the ‘coupled damage criterion’, including the continuum damage mechanics (CDM)-based Lemaitre model and the Gurson-Tvergaard-Needleman (GTN) model, are investigated to determine their reliability in ductile failure prediction. To create diverse stress and strain states and fracture modes, different deformation scenarios are generated using tensile and compression tests of Al-alloy 6061 (T6) with different sample geometries and dimensions. The two categories of criteria are coded into finite element (FE) models based on the unconditional stress integration algorithm in the VUMAT/ABAQUS platform. Through physical experiments, computations and three industrial case studies, the entire correlation panorama of the DFCs, deformation modes and DF mechanisms is established and articulated. The experimental and simulation results show the following. (1) The mixed DF mode exists in every deformation of concern in this study, even in the tensile test of the round bar sample with the smallest notch radius. A decrease of stress triaxiality (η-value) leads to a reduction in the accuracy of DF prediction by the two DFC categories of DFCs, due to the interplay between the principal stress dominant fracture and the shear-stress dominant factor. (2) For deformations with a higher η-value, both categories of DFCs predict the fracture location reasonably well. For those with a lower or even negative η-value, the GTN and CDM-based criteria and some of the uncoupled criteria, including the C&L, Ayada and Oyane models, provide relatively better predictions. Only the Tresca and Freudenthal models can properly predict the shear dominant fracture. The reliability sequence of fracture moment prediction is thus the GTN model, followed by the CDM-based model and the uncoupled models. (3) The applicability of the DFCs depends on the use of suitable damage evolution rules (void nucleation/growth/coalescence and shear band) and consideration of several influential factors, including pressure stress, stress triaxiality, the Lode parameter, and the equivalent plastic strain or shear stress. These parameters determine the deformation mode (shear dominant or maximum principal stress dominant deformation) and, further, the DF mechanism (dimple fracture/shear fracture/mixed fracture).  相似文献   

18.
Proposed is a parameter defined to characterize the onset of macrocrack initiation in notched steel bars and cracked three-point bend specimens. It accounts for stress triaxiality and damage by plasticity reflected via the effective plastic strain. Results are obtained for notched round bars made of 20#, A3, DE36I and DE36II steel by assuming that the stress triaxiality increases with increasing effective plastic strain; they are compared with the results by letting the stress triaxiality to be constant. Use are made of experimental data on the necking of tensile bars. The parameter corresponding to the onset of ductile fracture were found to be nearly constant. Since the local effective plastic stress can be related to the crack tip opening (COD) distance, the same procedure can be applied to evaluate fracture initiation in three-point bend specimens with an edge crack. It is found that the COD in AS1204-350 and AS1405-180 structural steels decreased with increasing stress triaxiality.  相似文献   

19.
Recent experimental evidence points to limitations in characterizing the critical strain in ductile fracture solely on the basis of stress triaxiality. A second measure of stress state, such as the Lode parameter, is required to discriminate between axisymmetric and shear-dominated stress states. This is brought into the sharpest relief by the fact that many structural metals have a fracture strain in shear, at zero stress triaxiality, that can be well below fracture strains under axisymmetric stressing at significantly higher triaxiality. Moreover, recent theoretical studies of void growth reveal that triaxiality alone is insufficient to characterize important growth and coalescence features. As currently formulated, the Gurson Model of metal plasticity predicts no damage change with strain under zero mean stress, except when voids are nucleated. Consequently, the model excludes shear softening due to void distortion and inter-void linking. As it stands, the model effectively excludes the possibility of shear localization and fracture under conditions of low triaxiality if void nucleation is not invoked. In this paper, an extension of the Gurson model is proposed that incorporates damage growth under low triaxiality straining for shear-dominated states. The extension retains the isotropy of the original Gurson Model by making use of the third invariant of stress to distinguish shear dominated states. The importance of the extension is illustrated by a study of shear localization over the complete range of applied stress states, clarifying recently reported experimental trends. The extension opens the possibility for computational fracture approaches based on the Gurson Model to be extended to shear-dominated failures such as projectile penetration and shear-off phenomena under impulsive loadings.  相似文献   

20.
Ductile failure experiments on a double notched tube (DNT) specimen subjected to a combination of tensile load and torque that was applied at a fixed ratio is presented. The experimental results extend those in Barsoum and Faleskog (2007a) down to zero stress triaxiality. A new and robust evaluation procedure for such tests is proposed, and a simple relation for the equivalent plastic strain at failure for combined normal and shear deformation, respectively, is developed. Tests were carried out on the medium strength medium hardening steel Weldox 420, and the high strength low hardening steel Weldox 960. The experimental results unanimously show that ductile failure not only depends on stress triaxiality, but is also strongly affected by the type of deviatoric stress state that prevails, which can be quantified by a stress invariant that discriminates between axisymmetric stressing and shear dominated stressing, e.g., the Lode parameter. Additional experiments on round notch bar (RNB) specimens are recapitulated in order to give a comprehensive account on how ductile failure depends on stress triaxiality, ranging from zero to more than 1.6, and the type of stress state for the two materials tested. This provides an extensive experimental data base that will be used to explore an extension of the Gurson model that incorporates damage development in shear presented in Xue et al. (2013) (Part II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号