首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The purpose of this research was to mask the intensely bitter taste of aceclofenac (ACF) and to formulate oro dispersible tablet (ODT) of the taste-masked drug. Taste masking was done by complexing aceclofenac with Hydroxypropyl-β-Cyclodextrin (HPβCD) by different methods. Phase solubility studies indicated complex with possible stoichiometry of 1:1 and a stability constant of 221.11 M?1. The complexes were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry studies. The characterization studies confirmed inclusion of the ACF within the nonpolar cavity of HPβCD in the neutralization method (NM). Remarkable improvement in the in vitro drug release profiles in pH 6.8 phosphate buffer was observed with all complexes, especially the neutralization. The complexes of ACF–HPβCD (1:1) was compressed into tablet and properties of tablets such as tensile strength, wetting time, in vitro disintegration time, and disintegration in the oral cavity were investigated to elucidate the wetting and disintegration characteristics of tablets. Polyplasdone XL-10 7% wt/wt gave the minimum disintegration time. Tablets of batch F4 containing Avicel 200 and 7% wt/wt Polyplasdone XL-10 showed faster disintegration, within 12 s, than the marketed tablet (128 s). Good correlation between in vitro disintegration with in-house developed method and in the oral cavity was recognized. Taste evaluation of ODT in human volunteers revealed considerable taste masking with the degree of bitterness below threshold value. Thus, results conclusively demonstrated successful masking of taste and rapid disintegration of the formulated tablets in the oral cavity.  相似文献   

2.
The purpose of this research work was to develop and evaluate a chronotherapeutic based colon-targeted drug delivery system of theophylline (THEO) exploiting pH-enzyme sensitive property for the prevention of episodic attack of asthma in early morning. Guar gum microspheres of theophylline were prepared by emulsification technique. Coating of microspheres was performed using solvent evaporation method with pH sensitive Eudragit(?) polymers. The particle size and surface morphology, entrapment efficiency and degree of swelling of microspheres were examined. The in vitro drug release studies were performed in pH progression medium and also in the presence of 2% rat caecal content. Theophylline was efficiently microencapsulated in guar gum microspheres at different polymer concentrations (1-4%). Fourier transform infrared (FT-IR)-spectroscopy confirmed the intermolecular interactions between guar gum and glutaraldehyde. Coating of guar gum microspheres by Eudragit led to decelerate the in vitro drug release of THEO. Moreover in vitro drug release studies also performed with 2% rat caecal content showed marked increment in drug release. The controlled release of THEO after a lag time was achieved with developed formulation for chronotherapeutic delivery. The pH dependent solubility behavior of Eudragit and gelling properties of guar gum are found to be responsible for delaying the release.  相似文献   

3.
In the present work, chitosan microspheres with a mean diameter between 6.32 μm and 9.44 μm, were produced by emulsion cross-linking of chitosan, and tested for chronotherapy of chronic stable angina. Aiming at developing a suitable colon specific strategy, diltiazem hydrochloride (DTZ) was encapsulated in the microspheres, following Eudragit S-100 coating by solvent evaporation technique, exploiting the advantages of microbiological properties of chitosan and pH dependent solubility of Eudragit S-100. Different microsphere formulations were prepared varying the ratio DTZ:chitosan (1:2 to 1:10), stirring speed (1000-2000 rpm), and the concentration of emulsifier Span 80 (0.5-1.5% (w/v)). The effect of these variables on the particle size and encapsulation parameters (production yield (PY), loading capacity (LC), encapsulation efficiency (EE)) was evaluated to develop an optimized formulation. In vitro release study of non-coated chitosan microspheres in simulated gastrointestinal (GI) fluid exhibited a burst release pattern in the first hour, whereas Eudragit S-100 coating allowed producing systems of controlled release diffusion fitting to the Higuchi model, and thus suitable for colon-specific drug delivery. DSC analysis indicated that DTZ was dispersed within the microspheres matrix. Scanning electron microscopy revealed that the microspheres were spherical and had a smooth surface. Chitosan biodegradability was proven by the enhanced release rate of DTZ in presence of rat caecal contents.  相似文献   

4.
Novel carboxymethyl chitosan (O-CMCS) microspheres containing an anti-tumor drug chelerythrine (CHE) have been successfully prepared by an emulsion crosslinking method using glutaraldehyde. The optimized microsphere formulation was characterized for particle size, shape, morphology, crystallinity and in vitro drug release. Results for mean particle size, drug loading content, entrapment efficiency and in vitro drug release of chelerythrine loaded microspheres were found to be 12.18 μm, 4.08%, 54.78% and 35.30% at pH 7.4 in 20 h, respectively. The optimized microspheres had an imperfect crystalline lattice and a spherical, rough morphology and the CHE release from O-CMCS microspheres followed the Higuchi matrix model. All these results suggested that O-CMCS microspheres are a promising carrier system for controlled drug delivery.  相似文献   

5.
Oral controlled release matrix tablets of zidovudine were prepared using different proportions and different viscosity grades of hydroxypropyl methylcellulose. The effect of various formulation factors like polymer proportion, polymer viscosity and compression force on the in vitro release of drug were studied. In vitro release studies were carried out using United States Pharmacopeia (USP) type 1 apparatus (basket method) in 900 ml of pH 6.8 phosphate buffer at 100 rpm. The release kinetics were analyzed using Zero-order model equation, Higuchi's square-root equation and Ritger-Peppas' empirical equation. Compatibility of drug with various formulations excipients used was studied. In vitro release studies revealed that the release rate decreased with increase in polymer proportion and viscosity grade. Increase in compression force was found to decrease the rate of drug release. Matrix tablets containing 10% hydroxypropyl methylcellulose (HPMC) 4000 cps were found to show a good initial drug release of 21% in the first hour and extended the release upto 16 h. Matrix tablets containing 20% HPMC 4000 cps and 10% HPMC 15000 cps showed a first hour release of 18% and extended the release upto 20 h. Mathematical analysis of the release kinetics indicated that the nature of drug release from the matrix tablets followed non-Fickian or anomalous release. No incompatibility was observed between the drug and excipients used in the formulation of matrix tablets. The developed controlled release matrix tablets of zidovudine, with good initial release (17-25% in first hour) and which extend the release upto 16-20 h, can overcome the disadvantages of conventional tablets of zidovudine.  相似文献   

6.
Orally disintegrating tablets (ODT) are gaining popularity over conventional tablets due to their convenience in administration and suitability for patients having dysphagia. Moreover no water is required for swallowing the tablets and hence suitable for geriatric, pediatric and traveling patients. The purpose of this study is to assess the suitability of spray dried excipient base in the formulation of ODTs of Valdecoxib (low aqueous solubility) and Metoclopramide (high aqueous solubility). Spray dried excipient base was prepared using Scientech spray drier. Super disintegrants (such as Ac-Di-Sol, Kollidon CL, sodium starch glycolate), diluent (mannitol) alongwith sweetening agent (aspartame) were used in the formulation of tablets. The tablets were evaluated for hardness, friability, water absorption ratio, disintegration time (DT) and in vitro drug release. Using the same excipients, the tablets were prepared by direct compression and were evaluated in the similar way. Maximum drug release and minimum DT were observed with Kollidon CL excipient base as compared to tablets prepared by direct compression, showing the superiority of the spray dried excipient base technique over direct compression technique.  相似文献   

7.
Colon-specific drug delivery systems (CDDS) can improve the bioavailability of drug through the oral route. A novel formulation for oral administration using pH-enzyme Di-dependent chitosan mcirospheres (MS) and 5-Fu as a model drug has been investigated for colon-specific drug delivery by the emulsification/chemical cross-linking and coating technique, respectively. The influence of polymer concentration, ratio of drug to polymer, the amount of crosslinking agent and the stirring speed on the encapsulation efficiency, particle size in microspheres were evaluated. The best formulation was optimized by an orthogonal design. Drug release studies under conditions mimicking stomach to colon transit have shown that the drug was protected from being released in the physiological environment of the stomach and small intestine. The plasma concentrations of 5-Fu after oral administration of coated chitosan MS to rats were determined and compared with that of 5-Fu solution. The in vivo pharmacokinetics study of 5-Fu loaded pH-enzyme Di-dependent chitosan MS showed sustained plasma 5-Fu concentration-time profile. The in vitro release correlated well with the pharmacokinetics profile. The results clearly demonstrated that the pH-enzyme Di-dependent chitosan MS is potential system for colon-specific drug delivery of 5-Fu.  相似文献   

8.
BHOJRAJ Suresh 《色谱》2010,28(1):93-99
 A novel in vitro dissolution profile was developed for formulated drug in combinational form containing naproxen sodium (NAP) and sumatriptan succinate (SUMA). This study was performed to understand the dissolution of the drug in the physiological temperature and pH. Dissolution testing was performed using USP 29 type II testing apparatus rotating at 50 r/min, in 900 mL deaerated buffer (pH 1.2, 4.5 and 6.8) which was maintained at (37±0.5) ℃. Quantification was performed using a developed and validated high performance liquid chromatographic (HPLC) method. Aceclofenac (ACE) was used as internal standard. SUMA, ACE and NAP were eluted at 4.8, 5.7 and 7.9 min, respectively. As expected for enteric coated immediate release (IR) tablets, the dissolution of NAP and SUMA was rapid and essentially complete within 2 h using phosphate buffer (pH 6.8). The comparison of the dissolution profiles was realized by model independent approach using a difference factor (f1), similarity factor (f2) and dissolution efficiency (DE). Statistical results showed the profiles were similar to the reference and the test products. Hence, this method demonstrated to be adequate for in vitro studies of NAP and SUMA in the combinational dosage form, since there is no official monograph, collaborating to the official codes.  相似文献   

9.
The object of this study was to develop hydroxypropyl methylcellulose (HPMC) based cephalexin extended release tablet, which can release the drug for six hours in predetermined rate. Twenty-one batches of cephalexin tablets were prepared by changing various physical and chemical parameters, in order to get required theoretical release profile. The influences of HPMC, microcrystalline cellulose powder (MCCP), granulation technique, wetting agent and tablet hardness on cephalexin release from HPMC based extended release tablets were studied. The formulated tablets were also characterized by physical and chemical parameters. The dissolution results showed that a higher amount of HPMC in tablet composition resulted in reduced drug release. Addition of MCCP resulted in faster drug release. Tablets prepared by dry granulation was released the drug slowly than the same prepared with a wet granulation technique. Addition of wetting agent in the tablets prepared with dry granulation technique showed slower release. An increase in tablet hardness resulted in faster drug release. Tablets prepared with a wet granulation technique and having a composition of 9.3% w/w HPMC with a hardness of 10-12 kg/cm(2) gave predicted release for 6 h. The in vitro release data was well fit in to Higuchi and Korsmeyer-Peppas model. Physical and chemical parameters of all formulated tablets were within acceptable limits. One batch among formulated twenty-one batches was successful and showed required theoretical release. The effect of storage on in vitro release and physicochemical parameters of successful batch was studied and was found to be in acceptable limits.  相似文献   

10.
Mucoadhesive chitosan microspheres of acyclovir were prepared to prolong the gastric residence time using simple emulsification phase separation technique. The particle morphology of drug-loaded formulations was measured by SEM and the particle size distribution was determined using an optical microscope. The release profile of acyclovir from microspheres was examined in simulated gastric fluid (SGF pH 1.2). The particles were found to be discreet and spherical with the maximum particles of an average size (31.62 ± 4.64). The entrapment efficiency was found to be in the range of 40.24 to 67.29%. The concentration of the glutaraldehyde (25%v/v) as a cross-linker 2 ml and drug polymer ratio of 1:2 caused an increase in the entrapment efficiency and the extent of drug release. The optimized chitosan microspheres were found to possess good bioadhesion (79.89 ± 1.01%). The gamma-scintigraphy study showed the gastric residence time of more than 6 hours which revealed that optimized formulation could be a good choice for gastroretentive systems.  相似文献   

11.
In the present study, we attempted to prepare biodegradable microspheres of polylactic acid containing aripiprazole in order to achieve its controlled release profile suitable for parenteral administration. Biodegradable microspheres were prepared by solvent evaporation method using methylene dichloride as a solvent. The optimization of various formulation variables (e.g., stirring speed, and polymer:drug ratio, stabilizer concentration) to obtain spherical particles was also investigated. The optimized product was further characterized for various in vitro attributes, such as particle size and its distribution, encapsulation efficiency, surface properties, percentage yield, and in vitro release. Changing the ratio of polymer, stabilizers, and leaching agent (sodium chloride) affected the entrapment efficiency and release rate of aripiprazole. The release quantum was 88.41% when stirring rate was 2000 rpm and it was further increased to 94.65% when stirring speed was increased to 3000 rpm (Formulation E). Drug entrapment of microspheres was increased by increasing the concentration of PVP and maximum entrapment (62.35%) was obtained at 4% concentration of PVP (Formulation E). Spherical particles with good surface characteristics were obtained at stirring rate 3000 rpm and drug:polymer ratio 1:10.  相似文献   

12.
Poor aqueous solubility and the unpleasant taste of aripiprazole (APZ) have been recurring problems, owing to its low bioavailability and low patient tolerance, respectively. Herein, we prepared a nanohybrid system that was based on a bentonite clay material, montmorillonite (MMT), which could both mask the taste and enhance the solubility of APZ (i.e., APZ‐MMT). To further improve the efficacy of this taste masking and drug solubility, APZ‐MMT was also coated with a cationic polymer, polyvinylacetal diethylamino acetate (AEA). In vitro dissolution tests at neutral pH showed that the amount of drug that was released from the AEA‐coated APZ‐MMT was greatly suppressed (<1 %) for the first 3 min, thus suggesting that AEA‐coated APZ‐MMT has strong potential for the taste masking of APZ. Notably, in simulated gastric juice at pH 1.2, the total percentage of APZ that was released within the first 2 h increased up to 95 % for AEA‐coated APZ‐MMT. Furthermore, this in vitro release profile was also similar to that of Abilify®, a commercially available medication. In vivo experiments by using Sprague–Dawley rats were also performed to compare the pharmacokinetics of AEA‐coated APZ‐MMT and Abilify®. AEA‐coated APZ‐MMT exhibited about 20 % higher systemic exposure of APZ and its metabolite, dehydro‐APZ, compared with Abilify®. Therefore, a new MMT‐based nanovehicle, which is coated with a cationic polymer, can act as a promising delivery system for both taste masking and for enhancing the bioavailability of APZ.  相似文献   

13.
Metformin/Gliclazide extended release tablets were formulated with Eudragit NE30D by wet granulation technique. Two batches were prepared in order to study influence of drug polymer ratio on the tablet formation and in vitro drug release. The formulated tablets were characterized by disintegration time, hardness, friability, thickness, weight variation, and in vitro drug release. The percentage of polymer, with respect to Metformin/Gliclazide, required to produce tablets with acceptable qualities was 9 to 13.45. The percentage of polymer below this range released the drug immediately and above this range produced granules not suitable for tablet formation. The quantity of Metformin/Gliclazide present in the tablets and the release medium were estimated by a validated HPLC method. The formulated tablets had acceptable physicochemical characters and released the drug over 6-8 h. The data obtained from in vitro release studies were fitted with various kinetic models and was found to follow Higuchi kinetics.  相似文献   

14.
The salting-out taste-masking system is a multiparticulate system consisting of a drug core, a salting-out layer containing salts and water-soluble polymers, and a water-penetration control layer containing water-insoluble materials. The system generates a long lag time (time when released drug is less than 1%) for numbness masking, and a subsequent immediate drug release for high bioavailability. Aiming to contain the system and drugs that cause numbness in oral disintegrating tablets, the system was optimized to reduce the particle size and contain drugs with high water solubility in this study. The amount of coating on the layers, the coating solvent, and the positioning of the components were also optimized. The findings in this study will lead to the provision of numbness-masked oral disintegrating tablets to patients.  相似文献   

15.
Tianeptine tablets are currently marketed to be designed for immediate-release tablets. The tianeptine has a short half-life, making it difficult to design for sustained-release tablets and achieve bioequivalence with the tianeptine immediate-release tablet (Stablon®). We established the in vitro–in vivo correlation (IVIVC) of three formulations of tianeptine sustained-release tablets according to their granule size. To evaluate sustained drug release, in vitro tests were performed in pH 1.2 media for 24 h. In vivo pharmacokinetic analysis was performed following oral administration of reference drug and test drug to beagle dogs. The dissolution profile revealed delayed release as the size of the granules increased. The dissolution results were confirmed in pharmacokinetic analysis, showing that the half-life was delayed as granule size increased. The final formulation and reference drug showed an equivalent area under the curve (AUC). Through this, IVIVC was established according to the size of the tianeptine sodium granules, which is the purpose of this study, and was used to predict in vivo pharmacokinetics from the formulation composition. This approach may be useful for determining optimal formulation compositions to achieve the desired pharmacokinetics when developing new formulations.  相似文献   

16.
The present work describes the formulation of alginate microspheres containing diltiazem hydrochloride by the emulsification-internal gelation method with the use of barium carbonate as a cross-linking agent. The effect of various factors (the concentration of alginate and barium chloride) on the drug loading efficiency and in vitro release were investigated. Fourier transform infrared microscopy (FTIR) and differential scanninig calorimetry (DSC) analysis confirmed the absence of any drug polymer interaction. X-ray diffraction (XRD) pattern showed that there is a decrease crystallinity of the drug. The in vitro drug release profile could be altered significantly by changing various processing parameters to give a controlled release of drug from microcapsules. The stability studies of drug-loaded microcapsules showed that the drug was stable at different storage conditions.  相似文献   

17.
The purpose of this study was to develop a suitable formulation for gentamicin sulfate (GS) that gives a sustained release of the drug. Therefore this drug was loaded into poly(D,L-lactide-co-glycolide) (PLGA) and poly(lactic-co-hydroxymethyl glycolic acid) (PLHMGA) microspheres. The effects of various formulation parameters (ethanol, surfactant, osmotic value of the external phase, polymer type and concentration) on particle characteristics (size, loading and release) were investigated. The GS loaded microspheres were prepared using a double emulsion evaporation technique. The results demonstrate that neither ethanol nor surfactants had beneficial effects on the drug loading efficiency (around 4-10%). However, an increase in buffer concentration (and thus osmotic pressure) of the external phase resulted in a substantial increase of GS-loading (from 10 to 28%). Further, an increase of concentration of PLGA in DCM from 10% to 15/20% caused a 4-time increase of the drug loading. The best formulation identified in this study had a loading efficiency of around 70% resulting in PLGA microspheres with a 6% (w/w) loading. The particles showed a burst release of the drug depending on their porosity, followed by a phase of 35 days where hardly any release occurred. The drug was then slowly released for around 25 days likely due to degradation of the microspheres. The drug loading efficiency of GS in PLHMGA was not significantly different from PLGA microspheres (64%). The release of GS from PLHMGA microspheres was faster than that of PLGA because the degradation rate of PLHMGA is more rapid than PLGA. This study shows that prolonged release of gentamicin can be obtained by loading this drug into microspheres made of biodegradable aliphatic polyesters.  相似文献   

18.
采用膜乳化-液中干燥法制备出担载二甲基砜(MSM)的聚乳酸(PLA)微球(PLA/MSM), 并研究了膜孔径、 搅拌转速和MSM浓度对载药微球形貌、 尺寸、 载药量、 体外释放及细胞活性的影响; 采用场发射环境扫描电子显微镜(ESEM)观察微球形貌、 尺寸及分布, 用等离子体发射光谱(ICP-AES)法检测PLA/MSM微球载药量、 包封率及体外释放, 采用ESEM观察微球内部结构, 并通过体外细胞培养和噻唑蓝(MTT)法检测MC-3T3-E1细胞的增殖能力. 研究结果表明, 膜乳化法制备的载药微球规整, 呈典型的圆球状, 表面光滑, 内部有多孔结构. 当膜孔径为5.1 μm且搅拌转速为500 r/min时, PLA/MSM微球大小更为均一; 当体系中MSM质量分数为8.6%时, 载药量可达到77.43%. 随着膜孔径减小及药物浓度的增加, 体外释放速率加快, 但初期均无明显的突释现象, 约10 d后累积释放量达到89.2%. 细胞实验结果显示, 在膜孔径为5.1 μm且MSM质量分数为8.6%的条件下, 制备的载药微球在细胞培养7 d时表现出明显的促增殖作用.  相似文献   

19.
Preparation of PLGA microspheres with different porous morphologies   总被引:1,自引:0,他引:1  
甘志华  王峰 《高分子科学》2015,33(1):128-136
Poly(D,L-lactide-co-glycolide)(PLGA) microspheres were prepared by emulsion solvent evaporation method. The influences of inner aqueous phase, organic solvent, PLGA concentration on the morphology of microspheres were studied. The results showed that addition of porogen or surfactants to the inner aqueous phase, types of organic solvents and polymer concentration affected greatly the microsphere morphology. When dichloromethane was adopted as organic solvent, microspheres with porous structure were produced. When ethyl acetate served as organic solvent, two different morphologies were obtained. One was hollow microspheres with thin porous shell under a lower PLGA concentration, another was erythrocyte-like microspheres under a higher PLGA concentration. Three types of microspheres including porous, hollow core with thin porous shell(denoted by hollow in brief) and solid structures were finally selected for in vitro drug release tests. Bovine serum albumin(BSA) was chosen as model drug and encapsulated within the microspheres. The BSA encapsulation efficiency of porous, hollow and solid microspheres was respectively 90.4%, 79.8% and 0. And the ultimate accumulative release was respectively 74.5%, 58.9% and 0. The release rate of porous microspheres was much slower than that of hollow microspheres. The experiment results indicated that microspheres with different porous structures showed great potentials in controlling drug release behavior.  相似文献   

20.
The aim of the present study was to apply the simultaneous optimization method incorporating Artificial Neural Network (ANN) using Multi-layer Perceptron (MLP) model to the development of a metformin HCl 500 mg sustained release matrix tablets with an optimized in vitro release profile. The amounts of HPMC K15M and PVP K30 at three levels (-1, 0, +1) for each were selected as casual factors. In vitro dissolution time profiles at four different sampling times (1 h, 2 h, 4 h and 8 h) were chosen as output variables. 13 kinds of metformin matrix tablets were prepared according to a 2(3) factorial design (central composite) with five extra center points, and their dissolution tests were performed. Commercially available STATISTICA Neural Network software (Stat Soft, Inc., Tulsa, OK, U.S.A.) was used throughout the study. The training process of MLP was completed until a satisfactory value of root square mean (RSM) for the test data was obtained using feed forward back propagation method. The root mean square value for the trained network was 0.000097, which indicated that the optimal MLP model was reached. The optimal tablet formulation based on some predetermined release criteria predicted by MLP was 336 mg of HPMC K15M and 130 mg of PVP K30. Calculated difference (f(1) 2.19) and similarity (f(2) 89.79) factors indicated that there was no difference between predicted and experimentally observed drug release profiles for the optimal formulation. This work illustrates the potential for an artificial neural network with MLP, to assist in development of sustained release dosage forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号