首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic properties and the magnetocaloric effect of the compound TbPdAl are investigated. The compound exhibits a weak antiferromagnetic (AFM) coupling, and undergoes two successive AFM transitions at TN=43 K and Tt=22 K. A field-induced metamagnetic transition from AFM to ferromagnetic (FM) state is observed below TN, and a small magnetic field can destroy the AFM structure of TbPdAl, inducing an FM-like state. The maximal value of magnetic entropy change is −11.4 J/kg K with a refrigerant capacity of 350 J/kg around TN for a field change of 0-5 T. Good magnetocaloric properties of TbPdAl result from the high saturation magnetization caused by the field-induced AFM-FM transition.  相似文献   

2.
Kok-Kwei Pan 《Physica A》2012,391(5):1984-1990
The staggered susceptibility of spin-1 and spin-3/2 Heisenberg antiferromagnet with easy-axis single-ion anisotropy on the cubic lattice films consisting of n=2, 3, 4, 5 and 6 interacting square lattice layers is studied by high-temperature series expansions. Sixth order series in J/kBT have been obtained for free-surface boundary conditions. The dependence of the Néel temperature on film thickness n and easy-axis anisotropy D has been investigated. The shifts of the Néel temperature from the bulk value can be described by a power law nλ with a shift exponent λ, where λ is the inverse of the bulk correlation length exponent. The effect of easy-axis single-ion anisotropy on shift exponent of antiferromagnetic films has been studied. A comparison is made with related works. The results obtained are qualitatively consistent with the predictions of finite-size scaling theory.  相似文献   

3.
4.
黄海  李伟锋 《物理学报》2013,62(21):217501-217501
自旋s=1的海森堡反铁磁链材料LiVGe2O6的磁化率以及 核磁共振实验表明该材料在临界温度约为22 K时由顺磁相转变为反铁磁Néel相, 且低温磁激发谱存在能隙. 本文在已有模型哈密顿量的基础上提出了一个低能场论模型——Ginzburg-Landau理论来描述 这一反铁磁链材料, 并运用这一理论讨论了LiVGe2O6由于自发对称性破缺导致的有限温度相变及 相应的磁化率变化情况, 理论计算很好地解释了现有的实验结果. 关键词: 海森堡模型 σ模型')" href="#">O(3)非线性σ模型 有限温度相变  相似文献   

5.
Non-singlet excitations of the antiferromagnetic Heisenberg chain of N atoms with spin 12 are examined. It is found that the energy of the lowest lying excitations for total spin S and wave number q converges to (π2)| sin q | as N → ∞, if only S?ln N.  相似文献   

6.
We report on the ultrafast dynamics of magnetic order in a single crystal of CuO at a temperature of 207 K in response to strong optical excitation using femtosecond resonant x-ray diffraction. In the experiment, a femtosecond laser pulse induces a sudden, nonequilibrium increase in magnetic disorder. After a short delay ranging from 400 fs to 2 ps, we observe changes in the relative intensity of the magnetic ordering diffraction peaks that indicate a shift from a collinear commensurate phase to a spiral incommensurate phase. These results indicate that the ultimate speed for this antiferromagnetic reorientation transition in CuO is limited by the long-wavelength magnetic excitation connecting the two phases.  相似文献   

7.
The numerical solution of the Bethe ansatz equations of an integrableSU (2)-invariant generalization of the spin-S antiferromagnetic Heisenberg chain in zero magnetic field is presented. The thermodynamics is obtained numerically. The temperature dependence of the entropy, specific heat and susceptibility is presented forS5/2. The results are compared to those of then-channel Kondo problem with a spin-S impurity withn=2S.  相似文献   

8.
We have experimentally observed the dynamics of an antiferromagnetic sodium Bose-Einstein condensate quenched through a quantum phase transition. Using an off-resonant microwave field coupling the F = 1 and F = 2 atomic hyperfine levels, we rapidly switched the quadratic energy shift q from positive to negative values. At q = 0, the system undergoes a transition from a polar to antiferromagnetic phase. We measured the dynamical evolution of the population in the F = 1, mF = 0 state in the vicinity of this transition point and observed a mixed state of all 3 hyperfine components for q < 0. We also observed the coarsening dynamics of the instability for q < 0, as it nucleated small domains that grew to the axial size of the cloud.  相似文献   

9.
10.
The behavior of 2-dimensional (2D) van der Waals (vdW) layered magnetic materials in the 2D limit of the few-layer thickness is an important fundamental issue for the understanding of the magnetic ordering in lower dimensions. The antiferromagnetic transition temperature TN of the Heisenberg-type 2D magnetic vdW material MnPS3 was estimated as a function of the number of layers. The antiferromagnetic transition was identified by temperature-dependent Raman spectroscopy, from the broadening of a phonon peak at 155 cm−1, accompanied by an abrupt redshift and an increase of its spectral weight. TN is found to decrease only slightly from ~78 K for bulk to ~66 K for 3L. The small reduction of TN in thin MnPS3 approaching the 2D limit implies that the interlayer vdW interaction is playing an important role in stabilizing magnetic ordering in layered magnetic materials.  相似文献   

11.
For a wide class of antiferromagnetic models we prove the existence of a phase transition using an extended Peierls argument, taking into account a result of Dobrushin [R. L. Dobrushin,Funct. Anal. Appl. 2:44 (1968); in English,2:302 (1968)] for an antiferromagnetic Ising model and the results of Malyshev [V. Malyshev,Comm. Math. Phys. 40:75–82 (1975)] for ferromagnetic models (such as the anisotropic rotator). In particular we review a result of Fröhlich, Israel, Lieb, and Simon [J. Fröhlichet al., J. Stat. Phys. 22(3):297–347 (198)] obtained when reflection positivity holds.  相似文献   

12.
13.
14.
15.
The paramagnetic–antiferromagnetic phase transition of a single crystal of CoO, whose first- or second-order character is controversial, has been studied using a high sensitive calorimetric technique. Although both specific heat and differential thermal analysis (DTA) trace obtained at very low temperature rate (0.1 K h−1) show strong anomalies at the Néel temperature TN, the DTA trace and that calculated from the specific heat anomaly coincides indicating a continuous phase transition. In agreement with the theoretical predictions, the specific heat follows the 3D Ising model in a temperature range of 3 K below TN. Fisher relation for antiferromagnets is also obeyed in the same temperature range.  相似文献   

16.
17.
The quantized stationary spin wave modes in one-dimensional antiferromagnetic spin chains with easy axis on-site anisotropy have been studied by means of Landau-Lifshitz-Gilbert spin dynamics. We demonstrate that the confined antiferromagnetic chains show a unique behavior having no equivalent, neither in ferromagnetism nor in acoustics. The discrete energy dispersion is split into two interpenetrating n and n' levels caused by the existence of two sublattices. The oscillations of individual sublattices as well as the standing wave pattern strongly depend on the boundary conditions. Particularly, acoustical and optical antiferromagnetic spin waves in chains with boundaries fixed (pinned) on different sublattices can be found, while an asymmetry of oscillations appears if the two pinned ends belong to the same sublattice.  相似文献   

18.
The antiferromagnetic Heisenberg model on a pyrochlore lattice under external magnetic field is studied by classical Monte Carlo simulation. The model includes bilinear and biquadratic interactions; the latter effectively describes the coupling to lattice distortions. The magnetization process shows a half-magnetization plateau at low temperatures, accompanied with strong suppression of the magnetic susceptibility. Temperature dependence of the plateau behavior is clarified. Finite-temperature phase diagram under the magnetic field is determined. The results are compared with recent experimental results in chromium spinel oxides.  相似文献   

19.
20.
A phenomenological theory of exchange narrowing is developed for random-exchange Heisenberg antiferromagnetic chains at low temperature. The nearly logarithmic epr linewidth of quinolinium (tetracyanoquino-dimethane)2 is regained as an inhomogeneous superposition of thermally decoupled domains with widely different renormalized exchange fields that also describe the static thermodynamics. The temperature dependence of internal dipolar fields and of interchain interactions are modeled in terms of spin dilution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号