首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of ionic strength on association between the cationic polysaccharide chitosan and the anionic surfactant sodium dodecyl sulfate, SDS, has been studied in bulk solution and at the solid/liquid interface. Bulk association was probed by turbidity, electrophoretic mobility, and surface tension measurements. The critical aggregation concentration, cac, and the saturation binding of surfactants were estimated from surface tension data. The number of associated SDS molecules per chitosan segment exceeded one at both salt concentrations. As a result, a net charge reversal of the polymer-surfactant complexes was observed, between 1.0 and 1.5 mM SDS, independent of ionic strength. Phase separation occurs in the SDS concentration region where low charge density complexes form, whereas at high surfactant concentrations (up to several multiples of cmc SDS) soluble aggregates are formed. Ellipsometry and QCM-D were employed to follow adsorption of chitosan onto low-charged silica substrates, and the interactions between SDS and preadsorbed chitosan layers. A thin (0.5 nm) and rigid chitosan layer was formed when adsorbed from a 0.1 mM NaNO3 solution, whereas thicker (2 nm) chitosan layers with higher dissipation/unit mass were formed from solutions at and above 30 mM NaNO3. The fraction of solvent in the chitosan layers was high independent of the layer thickness and rigidity and ionic strength. In 30 mM NaNO3 solution, addition of SDS induced a collapse at low concentrations, while at higher SDS concentrations the viscoelastic character of the layer was recovered. Maximum adsorbed mass (chitosan + SDS) was reached at 0.8 times the cmc of SDS, after which surfactant-induced polymer desorption occurred. In 0.1 mM NaNO3, the initial collapse was negligible and further addition of surfactant lead to the formation of a nonrigid, viscoelastic polymer layer until desorption began above a surfactant concentration of 0.4 times the cmc of SDS.  相似文献   

2.
The adsorption of a biologically important glycoprotein, mucin, and mucin-chitosan complex layer formation on negatively charged surfaces, silica and mica, have been investigated employing ellipsometry, the interferometric surface apparatus, and atomic force microscopy techniques. Particular attention has been paid to the effect of an anionic surfactant sodium, dodecyl sulfate (SDS), with respect to the stability of the adsorption layers. It has been shown that mucin adsorbs on negatively charged surfaces to form highly hydrated layers. Such mucin layers readily associate with surfactants and are easily removed from the surfaces by rinsing with solutions of SDS at concentrations > or =0.2 cmc (1 cmc SDS in 30 mM NaCl is equal to 3.3 mM). The mucin adsorption layer is negatively charged, and we show how a positively charged polyelectrolyte, chitosan, associates with the preadsorbed mucin to form mucin-chitosan complexes that resist desorption by SDS even at SDS concentrations as high as 1 cmc. Thus, a method of mucin layer protection against removal by surfactants is offered. Further, we show how mucin-chitosan multilayers can be formed.  相似文献   

3.
The adsorption of sodium dodecyl sulfate (SDS) from aqueous solution onto a calcium fluoride substrate (CaF(2)), in the presence of polyethylene glycol (PEG) of different molecular weights, has been investigated using the interface specific nonlinear optical technique of sum frequency generation (SFG) vibrational spectroscopy. Spectra of adsorbed SDS (in the C-H stretching region) were recorded at the surface of a CaF(2) prism in contact with SDS solutions at concentrations up to the cmc (8 mM) of the pure surfactant and in contact with binary solutions containing SDS and PEG with molecular weights from 400 to 12 000. In contrast with SFG spectra from the same combinations of surfactant and polymer on a hydrophobic surface, there was no evidence of spectra arising from the actual polymer adsorbed on CaF(2) at any polymer molecular weight either in the absence or presence of surfactant. However, there was indirect evidence for the presence of adsorbed polymer from changes in the SDS SFG spectra in the presence of polymer compared with spectra when the polymer was absent. The SFG spectra of SDS at 0.8 mM were closely similar to each other at all polymer molecular weights and different from the spectra in the absence of the polymer. The spectral differences between the polymer present and polymer absent was much smaller when the solution concentration of surfactant was 8 mM.  相似文献   

4.
The interaction forces between layers of the triblock copolymer Pluronic F108 adsorbed onto hydrophobic radio frequency glow discharge (RFGD) thin film surfaces and hydrophilic silica, in polymer-free 0.15 M NaCl solution, have been measured using the atomic force microscope (AFM) colloid probe technique. Compression of Pluronic F108 layers adsorbed on the hydrophobic RFGD surfaces results in a purely repulsive force due to the steric overlap of the layers, the form of which suggests that the PEO chains adopt a brush conformation. Subsequent fitting of these data to the polymer brush models of Alexander-de Gennes and Milner, Witten, and Cates confirms that the adsorbed Pluronic F108 adsorbs onto hydrophobic surfaces as a polymer brush with a parabolic segment density profile. In comparison, the interaction between Pluronic F108 layers adsorbed on silica exhibits a long ranged shallow attractive force and a weaker steric repulsion. The attractive component is reasonably well described by van der Waals forces, but polymer bridging cannot be ruled out. The weaker steric component of the force suggests that the polymer is less densely packed on the surface and is less extended into solution, existing as polymeric isolated mushrooms. When the surfaces are driven together at high piezo ramp velocities, an additional repulsive force is measured, attributable to hydrodynamic drainage forces between the surfaces. In comparing theoretical predictions of the hydrodynamic force to the experimentally obtained data, agreement could only be obtained if the flow profile of the aqueous solution penetrated significantly into the polymer brush. This finding is in line with the theoretical predictions of Milner and provides further evidence that the segment density profile of the adsorbed polymer brush is parabolic. A velocity dependent additional stepped repulsive force, reminiscent of a solvation oscillatory force, is also observed when the adsorbed layers are compressed under high loads. This additional force is presumably a result of hindered drainage of water due to the presence of a high volume fraction of polymer chains between the surfaces.  相似文献   

5.
The forces acting between glass and between mica surfaces in the presence of two cationic gemini surfactants, 1,4 diDDAB (1,4-butyl-bis(dimethyldodecylammonium bromide)) and 1,12 diDDAB (1,12-dodecyl-bis(dimethyldodecylammonium bromide)), have been investigated below the critical micelle concentration (cmc) of the surfactants using two different surface force techniques. In both cases, it was found that a recharging of the surfaces occurred at a surfactant concentration of about 0.1 x cmc, and at all surfactant concentrations investigated repulsive double-layer forces dominated the interaction at large separations. At smaller separations, attractive forces, or regions of separation with (close to) constant force, were observed. This was interpreted as being due to desorption and rearrangement in the adsorbed layer induced by the proximity of a second surface. Analysis of the decay length of the repulsive double-layer force showed that the majority of the gemini surfactants were fully dissociated. However, the degree of ion pair formation, between a gemini surfactant and a bromide counterion, increased with increasing surfactant concentration and was larger for the gemini surfactant with a shorter spacer length.  相似文献   

6.
The effect of the anionic surfactant SDS (sodium dodecyl sulfate) on the adsorption behavior of cationic hydroxyethyl cellulose (Polymer JR-400) and hydrophobically modified cationic cellulose (Quatrisoft LM-200) at hydrophobized silica has been investigated by null ellipsometry and compared with the previous data for adsorption onto hydrophilic silica surfaces. The adsorbed amount of LM-200 is found to be considerably larger than the adsorbed amount of JR-400 at both surfaces. Both polymers had higher affinity toward hydrophobized silica than to silica. The effect of SDS on polymer adsorption was studied under two different conditions: adsorption of polymer/SDS complexes from premixed solutions and addition of SDS to preadsorbed polymer layers. Association of the surfactant to the polymer seems to control the interfacial behavior, which depends on the surfactant concentration. For the JR-400/SDS complex, the adsorbed amount on hydrophobized silica started to increase progressively from much lower SDS concentrations, while the adsorbed amount on silica increased sharply only slightly below the phase separation region. For the LM-200/SDS complex, the adsorbed amounts increased progressively from very low SDS concentrations at both surfaces, and no large difference in the adsorption behavior was observed between two surfaces below the phase separation region. The complex desorbed from the surface at high SDS concentrations above the critical micelle concentration. The reversibility of the adsorption of polymer/SDS complexes upon rinsing was also investigated. When the premixed polymer/SDS solutions at high SDS concentrations (>5 mM) were diluted by adding water, the adsorbed amount increased due to the precipitation of the complex. The effect of the rinsing process on the adsorbed layer was determined by the hydrophobicity of the polymer and the surface.  相似文献   

7.
The dynamic adsorption of polymer/surfactant mixtures containing poly(ethylene oxide) (PEO) with either tetradecyltrimethylammonium bromide (C(14)TAB) or sodium dodecyl sulfate (SDS) has been studied at the expanding air/water interface created by an overflowing cylinder, which has a surface age of 0.1-1 s. The composition of the adsorption layer is obtained by a new approach that co-models data obtained from ellipsometry and only one isotopic contrast from neutron reflectometry (NR) without the need for any deuterated polymer. The precision and accuracy of the polymer surface excess obtained matches the levels achieved from NR measurements of different isotopic contrasts involving deuterated polymer, and requires much less neutron beamtime. The PEO concentration was fixed at 100 ppm and the electrolyte concentration at 0.1 M while the surfactant concentration was varied over three orders of magnitude. For both systems, at low bulk surfactant concentrations, adsorption of the polymer is diffusion-controlled while surfactant adsorption is under mixed kinetic/diffusion control. Adsorption of PEO is inhibited once the surfactant coverage exceeds 2 μmol m(-2). For PEO/C(14)TAB, polymer adsorption drops abruptly to zero over a narrow range of surfactant concentration. For PEO/SDS, inhibition of polymer adsorption is much more gradual, and a small amount remains adsorbed even at bulk surfactant concentrations above the cmc. The difference in behavior of the two mixtures is ascribed to favorable interactions between the PEO and SDS in the bulk solution and at the surface.  相似文献   

8.
The effect of ethanol on the interaction between the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic polymer poly(vinylpyrrolidone) (PVP) has been investigated using a range of techniques including surface tension, fluorescence, electron paramagnetic resonance (EPR), small-angle neutron scattering (SANS), and viscosity. Surface tension and fluorescence studies show that the critical micelle concentration (cmc) of the surfactant decreases to a minimum value around 15 wt % ethanol; that is, it follows the cosurfactant effect. However, in the presence of PVP, the onset of the interaction, denoted cmc(1), between the surfactant and the polymer is considerably less dependent on ethanol concentration. The saturation point, cmc(2), however, reflects the behavior of the cmc in that it decreases upon addition of ethanol. This results in a decrease in the amount of surfactant bound to the polymer [C(bound) = cmc(2) - cmc] at saturation. The viscosity of simple PVP solutions depends on ethanol concentration, but since SANS studies show that ethanol has no effect on the polymer conformation, the changes observed in the viscosity reflect the viscosity of the background solvent. There are significant increases in bulk viscosity when the surfactant is added, and these have been correlated with the polymer conformation extracted from an analysis of the SANS data and with the amount of polymer adsorbed at the micelle surface. Competition between ethanol and PVP to occupy the surfactant headgroup region exists; at low ethanol concentration, the PVP displaces the ethanol and the PVP/SDS complex resembles that formed in the absence of the ethanol. At higher ethanol contents, the polymer does not bind to the ethanol-rich micelle surface.  相似文献   

9.
The physicochemical properties, such as critical micelle concentration (cmc), surface tension at cmc (γ(cmc)), and surface activity parameters of the mixtures of a new amino acid-based zwitterionic surfactant, N-(n-dodecyl-2-aminoethanoyl)-glycine (C(12)Gly) and an anionic surfactant, sodium dodecyl sulfate (SDS) at different molar fractions, X(1) (= [C(12)Gly]/([C(12)Gly] + [SDS])) of C(12)Gly were studied. A synergistic interaction was observed between the surfactants in mixtures of different X(1). The self-organization of the mixtures at different molar fractions, concentrations, and pH was investigated. Fluorescence depolarization studies in combination with dynamic light scattering, and transmission electron microscopic and confocal fluorescence microscopic images suggested the formation of bilayer vesicles in dilute solutions of SDS rich mixtures with X(1) ≤ 0.17 in the pH range 7.0 to 9.0. However, the electronic micrographs showed structures with fingerprint-like texture in moderately dilute to concentrated C(12)Gly/SDS mixture at X(1) = 0.50. The vesicles were observed to transform into small micelles upon lowering the solution pH and upon increase of total surfactant concentration in mixtures with X(1) ≤ 0.17. However, decrease of SDS content transformed vesicles into wormlike micelles. The structural transitions were correlated with bulk viscosity of the binary mixtures.  相似文献   

10.
We used atomic force microscopy (AFM) to study the deformation and wetting behavior of large (50-250 microm) emulsion droplets upon mechanical loading with a colloidal glass probe. Our droplets were obtained from water-in-oil emulsions. By adding gelatin to the water prior to emulsification, also droplets with a bulk elasticity were prepared. Systematic variations of surfactant and gelatin concentrations were made, to investigate their effect on the deformation and wetting behavior of the droplets and to identify the contributions of interfacial tension, bulk elasticity, and expelled water. The AFM experiments were performed in force--distance mode and showed on approach a repulsive regime which in many cases was terminated by a jump-in of the probe. In the case of pure water (i.e. gelatin-free) droplets, the repulsive part of the curve showed a good linearity, thus allowing the extraction of an effective droplet spring constant. This quantity was found to decrease on raising the surfactant concentration from below the critical micelle concentration (cmc) to well above the cmc, and its numerical values were found to correspond remarkably well to literature values for the interfacial tension. Our findings indicate that, on gelatin increase inside the droplets, the bulk elasticity gradually becomes dominant and the droplets' stiffness does not depend anymore on surfactant concentration. Also the stability of the droplet interface against wetting, as measured by the force at which the jump-in instability occurs, was enhanced by gelatin. For gelatin concentrations of > or =15 wt %, the droplets were found to behave like purely elastic bodies. Both gelatin and surfactant contribute positively to the stability against interface breakup.  相似文献   

11.
Although it is known that foaming a surfactant solution results in a depletion of the surfactant in the bulk phase, this effect is often overlooked and has never been quantified. Therefore, the influence of surfactant depletion on foam properties using solutions of the two nonionic surfactants, n-dodecyl-β-D-maltoside (β-C(12)G(2)) and hexaethyleneglycol monododecyl ether (C(12)E(6)), were investigated. These investigations were conducted in two steps. First, different foam volumes were generated with the same surfactant solution at a concentration of c = 2 cmc. It was found that the higher the foam volume, the larger the surfactant depletion. Second, two different bulk concentrations (c = 2 and 1.33 cmc) were used for the generation of 50 and 110 mL of foam, respectively. For a foam volume of 50 mL, no differences were observed, whereas generating 110 mL led to different results. The surfactant loss in the bulk solution was measured via surface tension measurements and then compared to the results of purely geometric considerations that take into account the amount of interface created in the foam. Both results were in very good agreement, which means that surfactant depletion can be calculated in the way suggested here. Under conditions where depletion plays a role, our approach can also be used to estimate the bubble size of a foam of known volume by measuring the surfactant concentration in the bulk solution after foaming.  相似文献   

12.
Rheological behavior of surfactant-stabilized colloidal dispersions of silica particles under extreme conditions (low pH, high ionic strength) has been investigated in relation to interparticle forces and stability of the dispersion. The surfactant used as the dispersing agent was C(12)TAB, a cationic surfactant. Stability analysis through turbidity measurements indicated that there is a sharp increase in the stability of the dispersion when the surfactant concentration is in the range of 8 to 10 mM in the system. The state of the dispersion changes from an unstable regime to a stable regime above a critical concentration of C(12)TAB in the system. In the case of interaction forces measured between the silica substrate and AFM tip, no repulsive force was observed up to a surfactant concentration of 8 mM and a transition from no repulsive forces to steric repulsive forces occurred between 8 and 10 mM. Rheological measurements as a function of C(12)TAB concentration indicated a significant decrease in the viscosity and linear viscoelastic functions of the dispersion over the same range of surfactant concentration (8 to 10 mM C(12)TAB), showing a strong correlation between the viscosity behavior, interparticle forces, and structure development in the dispersion.  相似文献   

13.
Force/distance curves for silicon nitride tip/flat silica or alumina coated by a layer of mixed micelles of cationic/anionic surfactant are measured by using AFM. Mixtures of SDS/C(n)TAB (with molecular ratios of 3:1 and 20:1) and C(n)TAB/SDS (with molecular ratio of 85:15) were used for alumina and silica substrates, respectively. The number of carbon atoms per C(n)TAB molecule, n, was in the range of 8 to 16. On the basis of the force/distance curves, the elastic modulus, E, and yield strength, Y, of surface micelles are calculated. It is shown that in surfactant mixtures containing SDS the maximal repulsive force (the barrier F(bar)) at which the tip punctured the micelles, as well as the magnitudes of E and Y, attained the maximal values for C(12)TAB ( i.e., when the hydrocarbon chain lengths of two oppositely charged surfactants are the same). Obviously, it can be related to the highest density structure of these micelles. Note that the literature data for the surface micelles from pure C(n)TAB solutions demonstrate a monotonic dependence of F(bar), E, and Y on n in the range of n = 8-16, whereas the oppositely charged mixed surfactant systems yield much higher values of F(bar), E, and Y than does an equivalent chain length from the homologue series plots. The results obtained for mechanical characteristics of mixed micelles at the surface are compared with the results for the relaxation time, tau(2), that characterizes the lifetime (and therefore structure) of the bulk micelles. Both the dependence of F(bar), E, and Y on n for the surface mixed micelles and tau(2) on n for the bulk mixed micelles demonstrate a maximum at n = 12 for the C(n)TAB + SDS system. This correlation between properties of the surface and bulk micelles suggests that the mechanical properties of the surface micelles are largely determined by the interactions between surfactant molecules with surfactant-substrate interactions playing a secondary role.  相似文献   

14.
The manipulation of the adsorption of the anionic surfactant, sodium dodecyl sulfate, SDS, onto hydrophilic silica by the polyelectrolytes, polyethyleneimine, PEI, ethoxylated PEI, and the polyamine, pentaethylenehexamine, has been studied using neutron reflectometry. The adsorption of a thin PEI layer onto hydrophilic silica promotes a strong reversible adsorption of the SDS through surface charge reversal induced by the PEI at pH 7. At pH 2.4, a much thicker adsorbed PEI layer is partially swelled by the SDS, and the SDS adsorption is now no longer completely reversible. At pH 10, there is some penetration of SDS and solvent into a thin PEI layer, and the SDS adsorption is again not fully reversible. Ethoxylation of the PEI (PEI-EO(1) and PEI-EO(7)) results in a much weaker and fragile PEI and SDS adsorption at both pH 3 and pH 10, and both polymer and surfactant desorb at higher surfactant concentrations (>critical micellar concentration, cmc). For the polyamine, pentaethylenehexamine, adsorption of a layer of intermediate thickness is observed at pH 10, but at pH 3, no polyamine adsorption is evident; and at both pH 3 and pH 10, no SDS adsorption is observed. The results presented here show that, for the amine-based polyelectrolytes, polymer architecture, molecular weight, and pH can be used to manipulate the surface affinity for anionic surfactant (SDS) adsorption onto polyelectrolyte-coated hydrophilic silica surfaces.  相似文献   

15.
The interactions between triblock copolymers of poly(ethylene oxide) and poly(propylene oxide), P103 and F108, EO(n)PO(m)EO(n), m = 56 and n = 17 and 132, respectively, and gemini surfactants (oligooxa)-alkanediyl-alpha,omega-bis(dimethyldodecylammonium bromide) (12-EO(x)-12), x = 0-3, have been studied in aqueous solution using isothermal titration calorimetry. The thermograms of F108 as a function of surfactant concentration show one broad peak at polymer concentrations, Cp, < or =0.50 wt %, below the critical micelle concentration (cmc) of the copolymer at 25 degrees C. It is attributed to interactions between the surfactant and the triblock copolymer monomer. The critical aggregation concentration (cac) remains constant while deltaHmax2 and the saturation concentration, C2, increase with increasing copolymer concentration. Analysis of the cac data offers semiquantitative support that the degree of ionization of the surfactant aggregates bound to polymers is likely to be larger than that at the surfactant cmc. In P103 solutions at Cp > or = 0.05 wt %, two peaks appear in the thermograms and they are attributed to the interactions between the gemini surfactant and the micelle or monomeric forms of the copolymer. An origin-based nonlinear fitting program was employed to deconvolute the two peaks and to obtain estimates of peak properties. An estimate of the fraction of copolymer in aggregated form was also obtained. The enthalpy change due to interactions between the surfactants and P103 aggregates is very large compared to values obtained for traditional surfactants. This suggests that extensive reorganization of copolymer aggregates and surrounding solvent occurs during the interaction. Dehydration of the copolymers by the surfactant may also play an important step in the interaction. The endothermic enthalpy change reflecting interactions between the surfactant and polymer decreases more rapidly as the length and hydrophilic character of the spacer increases, suggesting that more favorable interactions occur with the P103 monomers having shorter PEO segments.  相似文献   

16.
Direct measurements of the interaction forces between a spherical silica particle and a small air bubble have been conducted in aqueous electrolyte solutions by using an atomic force microscope (AFM). The silica particle was hydrophobized with a silanating reagent, and the interaction forces were measured by using several particles with different surface hydrophobicities. In the measured force curves, a repulsive force was observed at large separation distances as the particle moved towards the bubble. The origin of the repulsive force was attributed to an electrostatic double-layer force because both the particle and bubble were negatively charged. After the repulsive force, an extremely long-range attractive force acted between the surfaces. These results indicate that the intervening thin water film between the particle and bubble rapidly collapsed, resulting in the particle penetrating the bubble.

The instability of the thin water film between the surfaces suggests the existence of an additional attractive force. By comparing the repulsive forces of the obtained force curves with the DLVO theory, the rupture thickness was estimated. The hydrophobicity of the particle did not significantly change the rupture thickness, whereas the pH of the solution is considered to be a critical factor.  相似文献   


17.
Self-assembled Gemini surfactant film-mediated dispersion stability   总被引:1,自引:0,他引:1  
The force-distance curves of 12-2-12 and 12-4-12 Gemini quaternary ammonium bromide surfactants on mica and silica surfaces obtained by atomic force microscopy (AFM) were correlated with the structure of the adsorption layer. The critical micelle concentration was measured in the presence or absence of electrolyte. The electrolyte effect (the decrease of CMC) is significantly more pronounced for Gemini than for single-chain surfactants. The maximum compressive force, F(max), of the adsorbed surfactant aggregates was determined. On the mica surface in the presence of 0.1 M NaCl, the Gemini micelles and strong repulsive barrier appear at surfactant concentrations 0.02-0.05 mM, which is significantly lower than that for the single C(12)TAB (5-10 mM). This difference between single and Gemini surfactants can be explained by a stronger adsorption energy of Gemini surfactants. The low concentration of Gemini at which this surfactant forms the strong micellar layer on the solid/solution interface proves that Gemini aggregates (micelles) potentially act as dispersing agent in processes such as chemical mechanical polishing or collector in flotation. The AFM force-distance results obtained for the Gemini surfactants were used along with turbidity measurements to determine how adsorption of Gemini surfactants affects dispersion stability. It has been shown that Gemini (or two-chain) surfactants are more effective dispersing agents, and that in the presence of electrolyte, the silica dispersion stability at pH 4.0 can also be achieved at very low surfactant concentrations ( approximately 0.02 mM).  相似文献   

18.
Interactions of surfactants with hydrophobically modified polyelectrolytes in aqueous solutions are important in several applications such as detergents, cosmetics, foods, and paints. Fundamental questions arise on the mechanisms of complexation of the polyelectrolyte and surfactant that control their behavior. In this work, the complexation was studied by examining interactions in aqueous solutions of a hydrophobically modified polymer, poly(maleic acid/octyl vinyl ether) (PMAOVE), with sodium dodecyl sulfate (SDS) by monitoring viscosity, pyrene solubility, light scattering, and analytical ultracentrifugation. When the anionic surfactant SDS was added to aqueous solutions of the similarly charged polymer PMAOVE, the surfactant was incorporated into the hydrophobic nanodomains of PMAOVE even far below the cmc of the surfactant. On the basis of viscosity, pyrene solubility, and analytical ultracentrifugation data, it is proposed that PMAOVE undergoes structural unfolding and at higher SDS concentrations mixed micelles are formed.  相似文献   

19.
The association between low-charge-density polyelectrolytes adsorbed onto negatively charged surfaces (mica and silica) and an anionic surfactant, sodium dodecyl sulfate (SDS), has been investigated using surface force measurements, ellipsometry, and XPS. All three techniques show that the polyelectrolyte desorbs when the SDS concentration is high enough. The XPS study indicates that desorption starts at a SDS concentration of ca. 0.1 unit of cmc (8x10(-4) M) and that the desorption proceeds progressively as the SDS concentration is increased. Surface force measurements show that for the polyelectrolyte studied here, having 1% of the segments charged, the desorption proceeds without any swelling of the adsorbed layer. This behavior differs from that observed when polyelectrolytes of greater charge density are used. Copyright 2001 Academic Press.  相似文献   

20.
By using a classical density functional theory (interfacial statistical associating fluid theory), we investigate the structure and effective forces in nonadsorbing polymer-colloid mixtures. The theory is tested under a wide range of conditions and performs very well in comparison to simulation data. A comprehensive study is conducted characterizing the role of polymer concentration, particle/polymer-segment size ratio, and polymer chain length on the structure, polymer induced depletion forces, and the colloid-colloid osmotic second virial coefficient. The theory correctly captures a depletion layer on two different length scales, one on the order of the segment diameter (semidilute regime) and the other on the order of the polymer radius of gyration (dilute regime). The particle/polymer-segment size ratio is demonstrated to play a significant role on the polymer structure near the particle surface at low polymer concentrations, but this effect diminishes at higher polymer concentrations. Results for the polymer-mediated mean force between colloidal particles show that increasing the concentration of the polymer solution encourages particle-particle attraction, while decreasing the range of depletion attraction. At intermediate to high concentrations, depletion attraction can be coupled to a midrange repulsion, especially for colloids in solutions of short chains. Colloid-colloid second virial coefficient calculations indicate that the net repulsion between colloids at low polymer densities gives way to net attraction at higher densities, in agreement with available simulation data. Furthermore, the results indicate a higher tendency toward colloidal aggregation for larger colloids in solutions of longer chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号