首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Femtosecond pulses of fundamental Cr:forsterite laser radiation are used as a pump field to tune the frequency of copropagating second-harmonic pulses of the same laser through cross-phase modulation in a photonic crystal fiber. Sub-100-kW femtosecond pump pulses coupled into a photonic crystal fiber with an appropriate dispersion profile can shift the central frequency of the probe field by more than 100 nm, suggesting a convenient way to control propagation and spectral transformations of ultrashort laser pulses.  相似文献   

2.
Lim H  Ilday FO  Wise FW 《Optics letters》2003,28(8):660-662
We report a mode-locked ytterbium fiber laser that generates femtosecond pulses with energies as large as 2.2 nJ. This represents a 20-fold improvement in pulse energy compared with that of previously reported femtosecond Yb fiber lasers. The laser produces pulses as short as 52 fs, which are to our knowledge the shortest pulses to date from a Yb fiber laser. The laser is diode pumped by a wavelength-division multiplexing coupler, which leads to excellent stability.  相似文献   

3.
黄诗盛  王勇刚  李会权  林荣勇  闫培光 《物理学报》2014,63(8):84202-084202
利用氧化石墨烯作为可饱和吸收体,在被动锁模全正常色散掺镱光纤激光器中研究了多脉冲的现象,在同一抽运功率不同偏振态下,实验获得了矩形脉冲谐波锁模、耗散孤子谐波锁模、准谐波锁模,脉冲峰值周期性调制,脉冲簇、脉冲束、混沌多重脉冲的多脉冲现象,插入激光腔内的2nm窄带滤波器具有限制增益带宽、对脉冲塑形、诱导多脉冲产生的作用,调节偏振控制器相当于改变腔内增益,是实现不同类型多脉冲现象的主要原因,本实验研究有利于加深对多脉冲动力学行为在正常色散区域氧化石墨烯锁模掺镱光纤激光器中的理解。  相似文献   

4.
de Matos CJ  Popov SV  Taylor JR 《Optics letters》2003,28(20):1891-1893
The use of Raman gain in conventional fiber followed by dispersion compensation in a holey fiber in a synchronously pumped laser configuration allowed compression by a factor of 8.5 of output pulses at a selected wavelength with respect to the pump pulses. We obtained 2-ps output pulses at 1.14 microm from a totally fiber-integrated laser pumped with 17-ps pulses at 1 microm. Higher pulse compression should be possible with nonlinear chirp compensation. Ultrashort-pulse, all-fiber Raman lasers at wavelengths shorter than 1.3 microm are feasible.  相似文献   

5.
We present a numerical analysis of the dynamics of high-power self-similar light pulses in a fiber laser with a saturable absorber based on carbon nanotubes (CNTs). This analysis allows us to identify lasing regimes in a CNT-mode-locked ytterbium-fiber laser enabling the generation of self-similar linearly chirped light pulses with an energy up to 330 nJ, which can be compressed to a 210-fs transform-limited pulse width through linear chirp compensation in a pulse compressor. We show that, for typical parameters of a fiber laser, the bandwidth and the minimum transform-limited pulse width of a self-similar laser output are primarily limited by the small modulation depth of a CNT absorber.  相似文献   

6.
We investigate dynamics of the formation of high-power ultrashort self-similar light pulses (similaritons) in a fiber laser in the regime of positive dispersion. The physical factors limiting the energy and the pulse width of such pulses are revealed. We specify regimes where a laser system based on an ytterbium-doped fiber can generate self-similar pulses with an energy of about 80 nJ compressible to a pulse width of about 150 fs through extracavity linear chirp compensation.  相似文献   

7.
Fotiadi AA  Mégret P 《Optics letters》2006,31(11):1621-1623
Brillouin mirrors based on a single-mode optical fiber provide the simplest, completely passive, and most universal way to produce nanosecond pulses with extensive wavelength tunability. We propose an all-fiber solution, where a passively Q-switched Er-doped Briilouin fiber laser pumped by a low-power laser diode produces pulses with a peak/average power contrast of 500 W/25 mW and, in association with a conventional dispersion-shifted fiber employed as an extracavity nonlinear medium, causes the generation of a nanosecond supercontinuum extending from 900 to over 1800 nm. Expanding evolution of the spectrum kicked off by the multicascade Brillouin process is reported.  相似文献   

8.
The observation of dark pulse in a dispersion-managed fiber ring laser with net negative cavity group velocity dispersion (GVD) is reported. Both bright and dark pulses can be obtained in our fiber laser. When we appropriately adjust the cavity birefringence to achieve triple-wavelength mode-locked operation in the laser by rotating the polarization controller, the bright pulse could be switched to dark pulse. It is believed that the dark dispersion-managed (DM) pulse generation is caused by the linear and nonlinear intermodulation effects among the three wavelength pulses.  相似文献   

9.
In this paper we performed the experimental and numerical study of a passively mode-locked fiber laser that generates packets of sub-picosecond pulses instead of individual pulses. The proposed configuration is a figure-eight fiber laser scheme, which includes a Nonlinear Optical Loop Mirror with polarization asymmetry inserted into a ring cavity. No experimental evidence of self-starting mode locking operation of the laser was observed; however, for proper adjustments of the wave retarders included in the setup, a mechanical stimulation triggers the onset of mode locking. The autocorrelation of the generated pulses shows a narrow sub-picosecond peak riding a large sub-nanosecond pedestal whose intensity is half that of the peak, and the optical spectrum is smooth and wide. We show that contrary to conventional ultrashort pulses, these pulses do not vanish rapidly after propagation through a long dispersive fiber, which makes then attractive for super-continuum generation as well as for applications in metrology. Finally, we study the pulse formation in the laser and present arguments based on experimental data and numerical simulations that the observed pulses are actually sets of a large number of solitons.  相似文献   

10.
We report an experimental observation of dark pulse generation in a dispersion-managed erbium-doped fiber laser with net anomalous cavity group-velocity dispersion. It is found that apart from the bright soliton pulses, dark pulses with spectral sidebands could be obtained in the laser under appropriate operating conditions. The generation of dark pulses may be attributed to soliton shaping in the cavity.  相似文献   

11.
We report the experimental study of broadband spectrum generation in a piece of standard fiber (SMF-28) using as the pump a train of noise-like pulses, or sub-nanosecond packets of sub-ps pulses with randomly varying amplitudes. The pulses are generated by an erbium-doped figure-eight fiber laser, and present a wide (∼50 nm) optical spectrum, which represents a significant advantage to seed the generation of new frequencies. Another advantage of the pulses is their relatively large energy, as they are made up of a large number of ultrashort pulses. After amplification with an Erbium Doped Fiber Amplifier (EDFA), the pulses were injected in a 0.75 km length of SMF-28 fiber. We obtained experimentally at the end of the fiber an output signal spectrum extending from 1530 nm to at least 1750 nm (the upper limit of the spectrum analyzer) for pump pulses with an average power of 20.4 mW, corresponding to a few kilowatts peak power. The spectral broadening is due to Raman self-frequency shift (SFS). It is noteworthy that the spectrum of the newly created frequencies was extremely uniform over the range of measurement. Considering that the Raman shift is directly related to the pump pulse duration, spectral flatness is a direct consequence of the random distribution of amplitudes and durations of the pulses in the packet. Finally, the results show the capabilities of noise-like pulses from a fiber laser for applications in supercontinuum generation based on nonlinear phenomena such as Raman SFS.  相似文献   

12.
We report experimental evidence of waveguide self-compression for high-power Cr: forsterite-laser femtosecond pulses in a hollow photonic-crystal fiber. Dispersion spreading typical of low-intensity laser pulses is replaced by nonuniform compression for pulses with high power (above 100 MW) with the compression efficiency reaching its maximum around the peak of the laser pulse.  相似文献   

13.
Hollow-core photonic-crystal fibers are shown to substantially enhance four-wave mixing (FWM) of laser pulses in a gas filling the fiber core. Picosecond pulses of Nd:YAG fundamental radiation and its second harmonic are used to generate a signal at the frequency of the third harmonic by the FWM process 3omega = 2omega + 2omega - omega. The efficiency achieved for this process in a 9-cm-long, 13-microm-hollow-core-diameter photonic-crystal fiber, designed to simultaneously transmit a two-color pump and the FWM signal, is shown to be approximately 800 times higher than the maximum FWM efficiency attainable with the same laser pulses in the tight-focusing regime.  相似文献   

14.
Zhou  Y. -W. 《Laser Physics》2012,22(4):753-756
A polarization-controlled multiple dissipative solitons generation in a normal dispersion fiber ring laser operating in L-band is demonstrated. The fiber laser is passively mode-locked with nonlinear polarization rotation (NPR) technique. Depending on the rotations of the PCs, the number of the pulses circulating in the laser cavity can be tuned from 1 to 4. The experimental results suggest that the generation of multiple pulses is caused by the soliton shaping of dispersive waves induced by the variations of spectral filtering effect.  相似文献   

15.
M. Yan  W. Li  K. Yang  H. Zhou  H. Zeng 《Laser Physics》2011,21(3):526-530
A stretched-pulse mode-locked ytterbium-doped fiber laser was passively synchronized to a femtosecond Ti:sapphire laser at a low repetition rate of 240 kHz through large cross absorption modulation along additional 1-m-long erbium-doped fiber. The synchronous fiber laser with an ultra-long fiber cavity could produce not only nanosecond flat-top pulses with tunable pulse duration but also Gaussian-shape stretched pulses with its minimum pulse duration of ∼450 ps as confirmed by cross-correlation measurement. When operating in the stretched pulse regime, the sub-nanosecond fiber laser could be synchronously triggered by the master injection with the cavity-length mismatch tolerance up to ∼7.8 cm and timing jitter less than 400 fs, confirming that the stretched-pulse mode-locking of the ultra-long slave fiber laser could be robustly controlled by cross absorption modulation effects in the erbium-doped fiber with appropriate femtosecond master injection.  相似文献   

16.
The supercontinuum generation has been obtained in short conventional dispersion-shifted fiber using the femtosecond pulses from a passively mode-locked erbium-doped fiber laser. In the experiment, the supercontinuum spectrum of >300 nm has been observed by injecting 70-fs pulses into a several-meter dispersion-shifted fiber. The simulation of the evolution in the fiber shows that spectral broadening arises from soliton dynamics when pumping using femtosecond pulses in the anomalous group velocity dispersion regime of the fiber.  相似文献   

17.
We have investigated the generation of widely-separated bound pulses with a high power passively mode-locked Yb-doped double clad fiber laser. We report on the emission of bound pulses of 5 ps whose separation can exceed 180 ps. Pulses are further compressed extra-cavity to 140 fs, leading to pulse separations that can reach approximately 1300 pulse widths, while pulses remain bound. Scenarios leading to these regimes are detailed. RF analysis shows an important reduction of the amplitude noise of the laser when pulses bind together. Finally, we report on a new regime of multiple pulse emission of this fiber laser: stable co-emission of a single-pulse and a pair of bound pulses in the same cavity round trip. PACS 42.55.Wd; 42.65.Re  相似文献   

18.
Jeon MY  Lee HK  Ahn JT  Kim KH  Lim DS  Lee el-H 《Optics letters》1998,23(11):855-857
We report, for the first time to our knowledge, the demonstration of amplitude equalization of high-repetition-rate pulses generated from a rational harmonic mode-locked Er-doped fiber laser. The output pulses are injected into another fiber laser with a nonlinear optical loop mirror. This scheme provides pulse-amplitude equalization up to the ninth rational harmonic mode-locked pulse train.  相似文献   

19.
We experimentally investigate an all-fiber passively mode-locked laser generating ps pulses. The experimental setup is a figure eight fiber laser configuration, including a power-symmetric Nonlinear Optical Loop Mirror (NOLM) with highly twisted low-birefringence fiber in the loop. NOLM switching is achieved by polarization asymmetry between the counter-propagating beams in the loop. We used a Quarter-Wave Retarder in the loop to break the polarization symmetry. Using a polarizer beam-splitter cube as the NOLM output we got the best quality output pulses from the laser. At this output, we are monitoring the output pulse polarization component which is parallel to the input NOLM component. We achieved stable generation of ~25 ps pulses at the repetition frequency of 0.78 MHz with milliwatts average output power. The mode-locked laser ran in stable operation for hours.  相似文献   

20.
The pulse timing of a mode-locked Er-doped fiber laser was stabilized to a reference pulse train from a Cr:forsterite mode-locked laser by all-optical passive synchronization scheme. The reference pulses were injected into a ring cavity of the fiber laser by using a 1.3-1.5 mum wavelength-division multiplexer. The spectral shift induced by cross-phase modulation between copropagating two-color pulses realizes self-synchronization due to intracavity group-delay dispersion. The rms integration of timing jitter between the fiber laser pulse and the reference pulse was 3.7 fs in a Fourier frequency range from 1 Hz to 100 kHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号