首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A procedure for the simultaneous determination of bromine and iodine by inductively coupled plasma (ICP) mass spectrometry was investigated. In order to prevent the decrease in the ionization efficiencies of bromine and iodine atoms caused by the introduction of water mist, electrothermal vaporization was used for sample introduction into the ICP mass spectrometer. To prevent loss of analytes during the drying process, a small amount of tetramethylammonium hydroxide solution was placed as a chemical modifier into the tungsten boat furnace. After evaporation of the solvent, the analytes instantly vaporized and were then introduced into the ICP ion source to detect the (79)Br(+), (81)Br(+), and (127)I(+) ions. By using this system, detection limits of 0.77 pg and 0.086 pg were achieved for bromine and iodine, respectively. These values correspond to 8.1 pg mL(-1) and 0.91 pg mL(-1) of the aqueous bromide and iodide ion concentrations, respectively, for a sampling volume of 95 microL. The relative standard deviations for eight replicate measurements were 2.2% and 2.8% for 20 pg of bromine and 2 pg of iodine, respectively. Approximately 25 batches were vaporizable per hour. The method was successfully applied to the analysis of various certified reference materials and practical situations as biological and aqueous samples. There is further potential for the simultaneous determination of fluorine and chlorine.  相似文献   

2.
3.
A tungsten boat furnace vaporization inductively coupled plasma mass spectrometry (TBF/ICP‐MS) method has been applied to the direct determination of bromine in plastic samples. In the pretreatment, the plastic sample is spread over a small sample cuvette made of tungsten by treating it with a strongly basic organic solution, e.g., octanol or diisobutyl ketone in the presence of potassium hydroxide. The cuvette is placed on a tungsten boat furnace, with which the electrothermal vaporizer is equipped. At the vaporization step, a widely spread thin layer of the sample facilitates its efficient evaporation and introduction into an ICP mass spectrometer. The most remarkable feature is that all the bromine species in plastic samples are decomposed to form a thermally stable inorganic salt during the pretreatment procedure. Therefore, the bromine content in plastic samples can be measured by a calibration curve method constructed with an aqueous standard solution of potassium bromate(V). The detection limit (3σ) was estimated to be 0.77 pg of bromine, which corresponds to a concentration of 0.31 ng g?1 of bromine in plastic samples when a sample amount taken of 2.5 mg is studied. The relative standard deviation was calculated to be 2.2%. Analytical results of some plastic samples, which contained both inorganic bromide salts and also organic bromine species, are given. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Electrothermal vaporization (ETV) inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) with polyvinylidene fluoride (PVDF) as chemical modifier are critically compared for the determination of refractory elements in coal fly ash and airborne particulates. The atmospheric particulates that collected on a PVDF filter were introduced into the graphite furnace in the form of a slurry by dissolving the filter in dimethylformamide, and the dissolved filter PVDF, along with additional added PVDF powder, was used as a chemical modifier for subsequent ETV-ICP-OES and ETV-ICP-MS determination. The vaporization behaviors of analytes (Ti, Zr, V, Mo, Cr, La) in ETV-ICP-OES/MS were studied in detail, and the optimal ETV operating parameters were obtained. Under the optimized operating conditions, the detection limits of target elements were 0.08-2.7 ng m(-3) for ETV-ICP-OES and 0.5-50 pg m(-3) for ETV-ICP-MS, respectively, with analytical precisions of 3.5-7.3% for ETV-ICP-OES and 3.9-9.6% for ETV-ICP-MS, respectively. The tolerable amounts of matrix elements for ETV-ICP-OES are higher than for ETV-ICP-MS. Both ETV-ICP-OES and ETV-ICP-MS were used to directly determine the trace refractory elements in coal fly ash and airborne particulates and the analytical results are comparable.  相似文献   

5.
A method of electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the determination of trace lanthanides and yttrium in soil samples with a polytetrafluorethylene (PTFE) emulsion as chemical modifier to promote the vaporization of the analytes from the graphite furnace was developed in this paper. The analytical characteristics, spectral interference and matrix effect of the analytical method were evaluated and critically compared with those of pneumatic nebulization inductively coupled plasma mass spectrometry (PN-ICP-MS). Under the optimized operation conditions, the relative detection limits of lanthanides (La-Lu) and yttrium for ETV-ICP-MS and PN-ICP-MS were 0.4-20 ng l−1 and 1.0-21 ng l−1, respectively, the absolute detection limits for ETV-ICP-MS were 4-200 fg, which were improved by 1-2 orders of magnitude compared with PN-ICP-MS. While the analytical precision of ETV-ICP-MS is worse than that of PN-ICP-MS, with the R.S.D.s (%) of 4.1-10% for the former and 2.9-7.8% for the latter. Regarding to the matrix effect, both conventional method and stepwise dilution method were employed to observe the effect of matrix and the very similar results were obtained. It was found that the highest tolerance concentration of the matrix is 1000 mg l−1 and 800 mg l−1 for ETV-ICP-MS and PN-ICP-MS, respectively. To assess the accuracy, the proposed method was applied to the determination of trace lanthanides and yttrium in three different soil standard reference materials and one soil sample, and the determined values are in good agreement with the certified values or reference values.  相似文献   

6.
The addition of 5-10 mL min-1 nitrogen to the central channel of plasma in Laser ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) increases the sensitivities of Cd by a factor of 3 and decreases oxide interferences by one order of magnitude, which allows the direct analysis of trace levels of Cd in glass samples. This simple method shows a great potential for the direct determination of Cd in various kinds of samples.  相似文献   

7.
建立了一种在线化学蒸气发生-电感耦合等离子体质谱测定碘的方法。利用碘负离子的还原性,采用氧化还原手段,将碘负离子氧化为碘单质;然后通过碘单质的易挥发特点,将碘蒸气直接导入等离子体。该方法可以提高传输效率,改善样品利用率,使检测灵敏度得到极大的提高。方法的检出限为0.22μg/L,样品加标回收率在87.4%~97.75%之间,RSD(n=11)在3%以内。实验中预先将正5价碘还原成碘负离子,然后加入氧化剂将碘负离子氧化成碘单质进行检测;对碘的形态化学蒸气发生法进行了尝试。  相似文献   

8.
The newly conceived electrothermal vaporization (ETV) system using a tungsten boat furnace (TBF) sample cuvette was designed for the direct analysis of solid samples with detection by inductively coupled plasma mass spectrometry (ICP-MS). Into this small sample cuvette, a solid mixture of the biological samples and diammonium hydrogenphosphate powder as a fusion flux was placed and situated on a TBF. Tetramethylammonium hydroxide solution was added to the mixture. After the on-furnace digestion had been completed, the analyte in the cuvette was vaporized and introduced into the ICP mass spectrometer. The solid samples were analyzed by using a calibration curve prepared from the aqueous standard solutions. The detection limit was estimated to be 5.1 pg of lead, which corresponds to 10.2 ng g(-1) of lead in solid samples when a prepared sample amount of 1.0 mg was applied. The relative standard deviation for 8 replicate measurements obtained with 100 pg of lead was calculated to be 6.5%. The analytical results for various biological samples are described.  相似文献   

9.
The newly conceived electrothermal vaporization (ETV) system using a tungsten boat furnace (TBF) sample cuvette was designed for the direct analysis of solid samples with detection by inductively coupled plasma mass spectrometry (ICP-MS). Into this small sample cuvette, a solid mixture of the biological samples and diammonium hydrogenphosphate powder as a fusion flux was placed and situated on a TBF. Tetramethylammonium hydroxide solution was added to the mixture. After the on-furnace digestion had been completed, the analyte in the cuvette was vaporized and introduced into the ICP mass spectrometer. The solid samples were analyzed by using a calibration curve prepared from the aqueous standard solutions. The detection limit was estimated to be 5.1 pg of lead, which corresponds to 10.2 ng g–1 of lead in solid samples when a prepared sample amount of 1.0 mg was applied. The relative standard deviation for 8 replicate measurements obtained with 100 pg of lead was calculated to be 6.5%. The analytical results for various biological samples are described.  相似文献   

10.
Trace level quantities of some halogen elements are determined by coupling tungsten filament electrothermal vaporization (ETV) with reduced pressure argon inductively coupled plasma mass spectrometry (ICP-MS). Microliter aqueous samples of chlorides, bromides and iodides were loaded on the tungsten wire, where they were dried at constant current and then vaporized by using a high-capacity condenser discharge. On decreasing the pressure of the plasma, analyte intensity increased sharply. The reduced pressure ICP is seen to give a much narrower, more intense signal profile. The detection limits for bromine and chlorine improved about 10 times compared with an atmospheric pressure ICP ionization source. An electron collision ionization mechanism may contribute most to halogen ionization for reduced pressure ICP. The linear dynamic range was over three orders of magnitude. The precision was generally between 3–8%. Matrix effect was investigated with Na as a matrix element. Absolute detection limits for the elements studied are in the picogram to subnanogram range.  相似文献   

11.
Reported are results for the quantitative determination of absolute transport efficiency in electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the Perkin-Elmer HGA-600MS electrothermal vaporizer. The absolute transport efficiencies for Mo, In, Tl and Bi were determined using experimental conditions typical of those applied to real analysis by ETV-ICP-MS. Experiments using an on-line filter trapping apparatus indicated that particles produced by the ETV device were smaller than 0.1 μm in diameter. The nature and condition of the ETV graphite surface, the length of the transfer tube, and the effect that diluted seawater and palladium modifiers have on analyte transport efficiency were investigated. Transport efficiency was comparable for all elements studied and was enhanced with previously used, rather than new, graphite tubes and when seawater and palladium carriers were present. When analyte was vaporized without carrier from a new graphite tube, the transport efficiency to the plasma was approximately 10%. Approximately 70% of the total amount of analyte vaporized was deposited within the ETV switching valve, 19% onto the transfer tubing and 1% onto the components comprising the torch assembly. These conditions represent the `worst case scenario', with analyte transport to the plasma increasing to approximately 20% or more with the addition of carrier.  相似文献   

12.
The age of plutonium is defined as the time since the last separation of the plutonium isotopes from their daughter nuclides. In this paper, a method for age determination based on analysis of 241Pu/241Am and 240Pu/236Pu using ICP-SFMS is described. Separation of Pu and Am was performed using a solid phase extraction procedure including UTEVA, TEVA, TRU and Ln-resins. The procedure provided separation factors adequate for this purpose. Age determinations were performed on two plutonium reference solutions from the Institute for Reference Materials and Measurements, IRMM081 (239Pu) and IRMM083 (240Pu), on sediment from the Marshall Islands (reference material IAEA367) and on soil from the Trinity test site (Trinitite). The measured ages based on the 241Am/241Pu ratio corresponded well with the time since the last parent-daughter separations of all the materials. The ages derived from the 236U/240Pu ratio were in agreement for the IRMM materials, but for IAEA367 the determination of 236U was interfered by tailing from 238U, and for Trinitite the determined age was biased due to formation of 236U in the detonation of the “Gadget”.  相似文献   

13.
Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) is a very powerful technique for the direct analysis of solid materials prepared as slurries. The use of isotope dilution USS-ETV-ICP-MS (USS-ETV-ID-ICP-MS) for micro-homogeneity characterization studies of powdered reference materials based on elemental analyses, was investigated. Slurry analysis conditions were optimized taking into consideration density, particle size, analyte extraction, slurry mixing, analyte transport and sampling depth. Slurries were prepared using 1–20 mg of material and adding 1.0 ml of 5% nitric acid diluent containing 0.005% Triton X-100®. Three reference materials were analyzed (RM 8431a Mixed Diet, SRM 1548a Typical Diet and SRM 2709 San Joaquin Soil). Cu and Ni were determined in each material and Fe was also determined in RM 8431a Mixed Diet. ETV conditions were optimized and the benefit of using Pd as a carrier to enhance transport, combined with oxygen ashing was demonstrated. The accuracy of the method was verified by comparing analytical results with certified values. The precision of the method was demonstrated by comparing R.S.D.'s for slurry samples and aqueous standards and elemental ‘homogeneity’ was quantified based on the slurry sampling variability. The representative sample mass analyzed was calculated taking into consideration extraction of analyte into the liquid phase of the slurry. Representative sample masses of approximately 4 mg of RM 8431a provided slurry sampling variabilities of 10% or less for Cu, Fe and Ni. Representative sample masses of approximately 10 mg of SRM 1548a provided slurry sampling variabilities of approximately 10% for Cu and Ni. Representative sample masses of approximately 0.3 mg of SRM 2709 resulted in total analytical variabilities of less than 7%, highlighting the fact that the San Joaquin Soil is clearly the most homogeneous of the materials characterized.  相似文献   

14.
Cadmium is determined in urine samples collected from patients with age-related diseases. The urine is simply diluted 1:1 with water and placed on a tungsten coil electrothermal vaporizer treated with 200 μg of a permanent Pd modifier. A straightforward vaporization program is used to deliver the Cd vapor to an inductively coupled plasma atomic emission spectrometer. A high resolution spectrometer and a charge coupled device detector provide spectra across a 4.8 nm window encompassing two separate Cd emission lines: 226.5 and 228.8 nm. The limit of detection is 0.2 μg/L at each wavelength, and the linear dynamic range spans three orders of magnitude. The accuracy as measured with a urine standard reference material is 94%. The Pd modifier continues to be effective even after 150 vaporization cycles. Direct analysis of urine with the Pd modifier using simple aqueous calibration solutions provides results that are comparable to those observed after a much more complex method: chelation, extraction, and internal standardization without the modifier. The mean concentrations found by the two techniques differ by only 9%. The permanent Pd modifier allows direct analysis of limited sample volumes with decreased risks of contamination.  相似文献   

15.
A method is described for the direct determination of arsenic in fresh and saline waters by electrothermal vaporization inductively coupled plasma mass spectrometry. Arsenic could be determined directly in waters containing up to 10 000 μg ml−1 NaCl without interference from the formation of 75ArCl+. For non-saline waters, arsenic was determined directly with the addition to both aqueous calibration standards and samples of 0.1 μg each of Pd and Mg to act as physical carriers. For the analysis of highly saline waters, the use of Pd and Mg chemical modifier served to thermally stabilize arsenic up to a temperature of 1000°C, while the separate addition of 8 mg of ammonium nitrate was used to remove chloride from the sample. This eliminated serious spectral interference on 75As+ from 75ArCl+. Although the ArCl+ spectral interference was completely eliminated, residual Na co-volatilized with As caused signal suppression, requiring the use of the method of standard additions for calibration. An absolute limit of detection limit for As of 0.069 pg was obtained corresponding to 6.9 pg ml−1 in a 10 μl sample.  相似文献   

16.
提出了以二乙基二硫代磷酸(DDTP)为化学改进剂,低温电热蒸发ICP-OES法检测环境样品中的钴和镍,对影响金属螯合物形成及其蒸发条件进行了考察与优化。试验结果表明,在pH〉4.5,DDTP质量浓度为8.0g/L的条件下,试剂DDTP可与钴(Ⅱ),镍(Ⅱ)形成稳定的螯合物。并以螯合物的气态形式从石墨炉中。定量蒸发和传输至等离子体中,用于ETV-ICP-OES检测。钴(Ⅱ)和镍(Ⅱ)的检出限分别为19.6和17.3μg/L,与常规的ETV-ICP-OES法相比待测元素的蒸发温度降低了1200℃左右。方法已用于土壤和水系沉积物标准样品中钴和镍的检测。  相似文献   

17.
For electrothermal sample introduction, a commercially available tungsten boat atomizer for atomic absorption spectrometry (AAS) was transferred to a vaporizer for inductively coupled plasma atomic emission spectrometry (ICP-AES). The modification retained as much of the original design of the atomizer as possible, so that the apparatus could be switched easily between conventional tungsten boat furnace (TBF)-AAS and TBF-ICP-AES. By using this system, a procedure for the determination of vanadium and titanium in steel was investigated. The detection limits (S/N=3) of vanadium and titanium were 3.9 and 1.5 ng ml?1, respectively. The relative standard deviations for five replicate determinations were ca. 3% for both elements. The calibration graphs were linear up to 100 μg ml?1 vanadium(V) and 10 μg ml?1 titanium(IV). Results of analyses of some low-alloy steel samples are given.  相似文献   

18.
Li Y  Pradhan NK  Foley R  Low GK 《Talanta》2002,57(6):1143-1153
A new method for determining ultra-trace levels of hexavalent chromium in ambient air has been developed. The method involves a 24-h sampling of air into potassium hydroxide solution, followed by silica gel column separation of chromium (VI), then preconcentration by complexation and solvent extraction. The chromium (VI) complex was dissolved in nitric acid. The resultant chromium ions were determined by inductively coupled plasma mass spectrometry (ICP–MS) using a dynamic reaction cell (DRC) with ammonia as the reactive gas to reduce polyatomic interferences. The interconversion of chromium in potassium hydroxide solution and air sample matrix were investigated under ambient conditions. It was found that there was no conversion of chromium (VI) into chromium (III) species. However, it was observed that some chromium (III) species were converted into chromium (VI) species. For a KOH solution containing 100 μg l−1 of chromium (III) species, the rate of conversion was found to be 3% after 24 h exposure, 8% after 48 h, 10% after 72 h and no further conversion was observed thereafter. However, in a solution containing air sample matrix, 9.3% of chromium (III) converted to chromium (VI) within 6 h, and during the course of a 11-day exposure period, 13% (range 8–17%) of chromium (III) converted to chromium (VI). The method detection limit (MDL) for chromium (VI) in potassium hydroxide solution (0.025 M) was found to be 2×10−2 μg l−1. This is equivalent to 0.2 ng m−3 (for 23 m3 air sampled into 200 ml of KOH solution over a 24-h period). The recovery of spiked chromium (VI) from solutions containing air sample matrix was 95±9% (n=8). Matrix related interferences were estimated to be less than 10% based on recovery studies. The concentration of airborne chromium (VI) in Sydney residential areas was found to be less than 0.2 ng m−3, however, in industrial areas the concentrations ranged from 0.2 to 1.3 ng m−3 using this analytical procedure.  相似文献   

19.
A modified graphite furnace for solid-sampling atomic absorption spectrometry as an electrothermal vaporizer (ETV) was coupled to a Perkin–Elmer/Sciex ELAN 6000 ICP mass spectrometer. The integrals obtained from electrothermal vaporization of aliquots containing As, Cd, Cu, Co, Fe, Mn, Pb, Se, and Zn were compared with those obtained from pneumatic nebulization of the same aqueous standard solution. The pneumatic nebulizer was calibrated by weighing the mass of aqueous aerosol trapped on a filter. With “wet plasma” conditions maintained also for measurements with the ETV and reference signals for analyte signals obtained with the calibrated pneumatic nebulization, the transport efficiency of the ETV system, e.g. the ratio of the analyte amount introduced into the plasma to that amount dosed into the vaporizer, was determined. The transport efficiency of two different tube and interface designs has been evaluated. Investigations with and without the use of trifluoromethane as reactive gas, with different furnace heating rates, and with varying gas flows were performed. In general, the tube equipped with a nozzle led to generally higher transport efficiency than the standard tube. Without trifluoromethane transport efficiencies ranged from 10% to 35% with the standard tube and from 15% to 50% with the nozzle-type tube. With addition of 2 mL min–1 trifluoromethane to the argon flow of 400 mL min–1 through the tube, transport efficiencies from 20% to 70% and from 70% to100% were achieved with the standard and nozzle-type tubes, respectively.  相似文献   

20.
A modified graphite furnace for solid-sampling atomic absorption spectrometry as an electrothermal vaporizer (ETV) was coupled to a Perkin-Elmer/Sciex ELAN 6000 ICP mass spectrometer. The integrals obtained from electrothermal vaporization of aliquots containing As, Cd, Cu, Co, Fe, Mn, Pb, Se, and Zn were compared with those obtained from pneumatic nebulization of the same aqueous standard solution. The pneumatic nebulizer was calibrated by weighing the mass of aqueous aerosol trapped on a filter. With "wet plasma" conditions maintained also for measurements with the ETV and reference signals for analyte signals obtained with the calibrated pneumatic nebulization, the transport efficiency of the ETV system, e.g. the ratio of the analyte amount introduced into the plasma to that amount dosed into the vaporizer, was determined. The transport efficiency of two different tube and interface designs has been evaluated. Investigations with and without the use of trifluoromethane as reactive gas, with different furnace heating rates, and with varying gas flows were performed. In general, the tube equipped with a nozzle led to generally higher transport efficiency than the standard tube. Without trifluoromethane transport efficiencies ranged from 10% to 35% with the standard tube and from 15% to 50% with the nozzle-type tube. With addition of 2 mL min(-1) trifluoromethane to the argon flow of 400 mL min(-1) through the tube, transport efficiencies from 20% to 70% and from 70% to 100% were achieved with the standard and nozzle-type tubes, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号